| napply (H4 K2)]##]
nqed.
-(*unification hint 0 ≔ A,B ⊢ fun21 … and_morphism A B ≡ And A B.*)
unification hint 0 ≔ A,B ⊢ fun21 … (mk_binary_morphism1 … And (prop21 … and_morphism)) A B ≡ And A B.
(*nlemma test: ∀A,A',B: CProp[0]. A=A' → (B ∨ A) = B → (B ∧ A) ∧ B.
napply (. ((#‡H1)‡H2^-1)); nnormalize;
nqed.*)
-
-(*nlemma test: ∀A,A',B: CProp[0]. A=A' → (B ∨ A) = B → (B ∧ A) ∧ B.
- #A; #A'; #B; #H1; #H2;
- napply (. ((#‡H1)‡H2^-1)); nnormalize;
-nqed.*)
-
-(*interpretation "and_morphism" 'and a b = (fun21 ??? and_morphism a b).*)
-
ndefinition or_morphism: binary_morphism1 CPROP CPROP CPROP.
napply mk_binary_morphism1
[ napply Or
| napply (H4 H)]##]
nqed.
-unification hint 0 ≔ A,B ⊢ fun21 … or_morphism A B ≡ Or A B.
-
-(*interpretation "or_morphism" 'or a b = (fun21 ??? or_morphism a b).*)
+unification hint 0 ≔ A,B ⊢ fun21 … (mk_binary_morphism1 … Or (prop21 … or_morphism)) A B ≡ Or A B.
ndefinition if_morphism: binary_morphism1 CPROP CPROP CPROP.
napply mk_binary_morphism1
| #a; #a'; #b; #b'; #H1; #H2; napply mk_iff; #H; #w
[ napply (if … H2); napply H; napply (fi … H1); nassumption
| napply (fi … H2); napply H; napply (if … H1); nassumption]##]
-nqed.
\ No newline at end of file
+nqed.
alias symbol "eq" = "setoid eq".
alias symbol "eq" = "setoid eq".
alias symbol "eq" = "setoid1 eq".
+alias symbol "eq" = "setoid eq".
nrecord partition (A: setoid) : Type[1] ≝
{ support: setoid;
indexes: qpowerclass support;
| #a; #a'; #H; nrewrite < H; napply refl ]
##| #x; #Hx; nwhd; napply I
##| #y; #_;
- ngeneralize in match (covers ? P) in ⊢ ?; *; #_; #Hc;
- ngeneralize in match (Hc y I) in ⊢ ?; *; #index; *; #Hi1; #Hi2;
- ngeneralize in match (f_sur ???? f ? Hi1) in ⊢ ?; *; #nindex; *; #Hni1; #Hni2;
- ngeneralize in match (f_sur ???? (fi nindex) y ?) in ⊢ ?
- [##2: alias symbol "refl" = "refl".
+ nlapply (covers ? P); *; #_; #Hc;
+ nlapply (Hc y I); *; #index; *; #Hi1; #Hi2;
+ nlapply (f_sur ???? f ? Hi1); *; #nindex; *; #Hni1; #Hni2;
+ nlapply (f_sur ???? (fi nindex) y ?)
+ [ alias symbol "refl" = "refl".
alias symbol "prop1" = "prop11".
napply (. #‡(†?));##[##2: napply Hni2 |##1: ##skip | nassumption]##]
*; #nindex2; *; #Hni21; #Hni22;
nletin xxx ≝ (plus (big_plus (minus n nindex) (λi.λ_.s (S (plus i nindex)))) nindex2);
- napply (ex_intro … xxx); napply conj
+ @ xxx; @
[ napply iso_nat_nat_union_pre [ napply le_S_S_to_le; nassumption | nassumption ]
##| nwhd in ⊢ (???%%); napply (.= ?) [##3: nassumption|##skip]
- ngeneralize in match (iso_nat_nat_union_char n s xxx ?) in ⊢ ?
- [##2: napply iso_nat_nat_union_pre [ napply le_S_S_to_le; nassumption | nassumption]##]
+ nlapply (iso_nat_nat_union_char n s xxx ?)
+ [napply iso_nat_nat_union_pre [ napply le_S_S_to_le; nassumption | nassumption]##]
*; *; #K1; #K2; #K3;
- ngeneralize in match
+ nlapply
(iso_nat_nat_union_uniq n s nindex (fst … (iso_nat_nat_union s xxx n))
- nindex2 (snd … (iso_nat_nat_union s xxx n)) ?????) in ⊢ ?
- [ *; #E1; #E2; nrewrite > E1; nrewrite > E2; napply refl
+ nindex2 (snd … (iso_nat_nat_union s xxx n)) ?????)
+ [##2: *; #E1; #E2; nrewrite > E1; nrewrite > E2; napply refl
| napply le_S_S_to_le; nassumption
|##*: nassumption]##]
##| #x; #x'; nnormalize in ⊢ (? → ? → %); #Hx; #Hx'; #E;
include "hints_declaration.ma".
alias symbol "hint_decl" = "hint_decl_Type2".
-unification hint 0 ≔ A ⊢ carr1 (powerclass_setoid A) ≡ Ω^A.
+unification hint 0 ≔ A ⊢ carr1 (mk_setoid1 (Ω^A) (eq1 (powerclass_setoid A))) ≡ Ω^A.
(************ SETS OVER SETOIDS ********************)
unification hint 0 ≔ A ⊢
carr1 (qpowerclass_setoid A) ≡ qpowerclass A.
+(*CSC: non va!
+unification hint 0 ≔ A ⊢
+ carr1 (mk_setoid1 (qpowerclass A) (eq1 (qpowerclass_setoid A))) ≡ qpowerclass A.*)
+
nlemma mem_ok: ∀A. binary_morphism1 (setoid1_of_setoid A) (qpowerclass_setoid A) CPROP.
#A; @
[ napply (λx,S. x ∈ S)
##]
nqed.
+(*CSC: bug qui se metto x o S al posto di ?
+nlemma foo: True.
+nletin xxx ≝ (λA:setoid.λx,S. let SS ≝ pc ? S in
+ fun21 ??? (mk_binary_morphism1 ??? (λx.λS. ? ∈ ?) (prop21 ??? (mem_ok A))) x S);
+*)
unification hint 0 ≔ A:setoid, x, S;
SS ≟ (pc ? S)
(*-------------------------------------*) ⊢
- fun21 ??? (mem_ok A) x S ≡ mem A SS x.
+ fun21 ??? (mk_binary_morphism1 ??? (λx,S. x ∈ S) (prop21 ??? (mem_ok A))) x S ≡ mem A SS x.
nlemma subseteq_ok: ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) CPROP.
#A; @