--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/test/".
+
+include "logic/equality.ma".
+
+record R1 : Type := { C:> Type; plus: C \to C \to C}.
+record R2 : Type := { K:> Type; mult: K \to K \to K}.
+
+(* Missing syntactic sugar:
+ record R : Type := { r1 :> R1; r2 :> R2 with C r1 = K r2}
+*)
+record R : Type := { r1 :> R1; r2_ : R2; with_: C r1 = K r2_ }.
+
+(* This can be done automatically *)
+lemma r2 : R → R2.
+ intro;
+ apply mk_R2;
+ [ apply (C r)
+ | apply (eq_rect ? ? (λx.x → x → x));
+ [3: symmetry;
+ [2: apply (with_ r)
+ | skip
+ ]
+ | skip
+ | apply (mult (r2_ r))
+ ]
+ ].
+qed.
+coercion cic:/matita/test/r2.con.
+
+(* Let's play with it *)
+definition f ≝ λr:R.λx:r.plus ? (mult ? x x) x.
+
+axiom plus_idempotent: ∀r1:R1.∀x:r1. plus ? x x = x.
+axiom mult_idempotent: ∀r2:R2.∀x:r2. mult ? x x = x.
+
+lemma test: ∀r:R. ∀x:r. f ? x = x.
+ intros;
+ unfold f;
+ auto paramodulation.
+qed.
\ No newline at end of file