module G = GrafiteAst
module N = CicNotationPt
+(* functions to be moved ****************************************************)
+
+let rec list_split n l =
+ if n = 0 then [],l else
+ let l1, l2 = list_split (pred n) (List.tl l) in
+ List.hd l :: l1, l2
+
+(****************************************************************************)
+
+type name = string
+type what = Cic.annterm
+type using = Cic.annterm
+type count = int
+type note = string
+
+type step = Note of note
+ | Theorem of name * what * note
+ | Qed of note
+ | Intros of count option * name list * note
+ | Elim of what * using option * note
+ | Exact of what * note
+ | Branch of step list list * note
+
+(* level 2 transformation ***************************************************)
+
+let mk_name = function
+ | Some name -> name
+ | None -> "_"
+
+let mk_intros_arg = function
+ | `Declaration {C.dec_name = name}
+ | `Hypothesis {C.dec_name = name}
+ | `Definition {C.def_name = name} -> mk_name name
+ | `Joint _ -> assert false
+ | `Proof _ -> assert false
+
+let mk_intros_args pc = List.map mk_intros_arg pc
+
+let split_inductive n tl =
+ let l1, l2 = list_split (int_of_string n) tl in
+ List.hd (List.rev l2), l1
+
+let mk_what rpac = function
+ | C.Premise {C.premise_n = Some i; C.premise_binder = Some b} ->
+ Cic.ARel ("", "", i, b)
+ | C.Premise {C.premise_n = None; C.premise_binder = None} ->
+ Cic.ARel ("", "", 1, "COMPOUND")
+ | C.Term t -> t
+ | C.Premise _ -> assert false
+ | C.ArgMethod _ -> assert false
+ | C.ArgProof _ -> assert false
+ | C.Lemma _ -> assert false
+ | C.Aux _ -> assert false
+
+let rec mk_proof p =
+ let names = mk_intros_args p.C.proof_context in
+ let count = List.length names in
+ if count > 0 then Intros (Some count, names, "") :: mk_proof_body p
+ else mk_proof_body p
+
+and mk_proof_body p =
+ let cmethod = p.C.proof_conclude.C.conclude_method in
+ let cargs = p.C.proof_conclude.C.conclude_args in
+ let capply = p.C.proof_apply_context in
+ match cmethod, cargs with
+ | "Intros+LetTac", [C.ArgProof p] -> mk_proof p
+ | "ByInduction", C.Aux n :: C.Term (Cic.AAppl (_, using :: _)) :: tl ->
+ let rpac = List.rev capply in
+ let whatm, ms = split_inductive n tl in (* actual rx params here *)
+ let what, qs = mk_what rpac whatm, List.map mk_subproof ms in
+ [Elim (what, Some using, ""); Branch (qs, "")]
+ | _ ->
+ [Note (Printf.sprintf "%s %u" cmethod (List.length cargs))]
+
+and mk_subproof = function
+ | C.ArgProof ({C.proof_name = Some n} as p) -> Note n :: mk_proof p
+ | C.ArgProof ({C.proof_name = None} as p) -> Note "" :: mk_proof p
+ | _ -> assert false
+
+let mk_obj ids_to_inner_sorts prefix (_, params, xmenv, obj) =
+ if List.length params > 0 || xmenv <> None then assert false;
+ match obj with
+ | `Def (C.Const, t, `Proof ({C.proof_name = Some name} as p)) ->
+ Theorem (name, t, "") :: mk_proof p @ [Qed ""]
+ | _ -> assert false
+
(* grafite ast constructors *************************************************)
let floc = H.dummy_floc
let obj = N.Theorem (`Theorem, name, t, None) in
G.Executable (floc, G.Command (floc, G.Obj (floc, obj)))
+let mk_qed =
+ G.Executable (floc, G.Command (floc, G.Qed floc))
+
let mk_tactic tactic =
- let sep = G.Dot floc in
- G.Executable (floc, G.Tactical (floc, G.Tactic (floc, tactic), Some sep))
+ G.Executable (floc, G.Tactical (floc, G.Tactic (floc, tactic), None))
let mk_intros xi ids =
let tactic = G.Intros (floc, xi, ids) in
mk_tactic tactic
-
+
+let mk_elim what using =
+ let tactic = G.Elim (floc, what, using, Some 0, []) in
+ mk_tactic tactic
+
let mk_exact t =
let tactic = G.Exact (floc, t) in
mk_tactic tactic
-(* internal functions *******************************************************)
+let mk_dot = G.Executable (floc, G.Tactical (floc, G.Dot floc, None))
-let mk_intros_arg = function
- | `Declaration {C.dec_name = Some name}
- | `Hypothesis {C.dec_name = Some name}
- | `Definition {C.def_name = Some name} -> name
- | _ -> assert false
+let mk_sc = G.Executable (floc, G.Tactical (floc, G.Semicolon floc, None))
-let mk_intros_args pc = List.map mk_intros_arg pc
+let mk_ob = G.Executable (floc, G.Tactical (floc, G.Branch floc, None))
-let rec mk_proof p =
- let cmethod = p.C.proof_conclude.C.conclude_method in
- let cargs = p.C.proof_conclude.C.conclude_args in
- match cmethod, cargs with
- | "Intros+LetTac", [C.ArgProof q] ->
- let names = mk_intros_args q.C.proof_context in
- let num = List.length names in
- let text = String.concat " " names in
- mk_intros (Some num) [] :: mk_note text :: mk_proof q
- | _ -> [mk_note (Printf.sprintf "%s %u" cmethod (List.length cargs))]
+let mk_cb = G.Executable (floc, G.Tactical (floc, G.Merge floc, None))
+
+let mk_vb = G.Executable (floc, G.Tactical (floc, G.Shift floc, None))
+
+(* rendering ****************************************************************)
+
+let cont sep a = match sep with
+ | None -> a
+ | Some sep -> sep :: a
+
+let list_rev_map_concat map sep a l =
+ let rec aux a = function
+ | [] -> a
+ | [x] -> map a x
+ | x :: y :: l -> aux (sep :: map a x) (y :: l)
+ in
+ aux a l
+
+let rec render_step sep a = function
+ | Note s -> mk_note s :: a
+ | Theorem (n, t, s) -> mk_note s :: mk_theorem n t :: a
+ | Qed s -> mk_note s :: mk_qed :: a
+ | Intros (c, ns, s) -> mk_note s :: cont sep (mk_intros c ns :: a)
+ | Elim (t, xu, s) -> mk_note s :: cont sep (mk_elim t xu :: a)
+ | Exact (t, s) -> mk_note s :: cont sep (mk_exact t :: a)
+(* | Branch ([], s) -> mk_note s :: cont sep a
+ | Branch ([ps], s) -> mk_note s :: cont sep (render_steps a ps)
+*) | Branch (pss, s) ->
+ let a = mk_ob :: a in
+ let body = mk_cb :: list_rev_map_concat render_steps mk_vb a pss in
+ mk_note s :: cont sep body
+
+and render_steps a = function
+ | [] -> a
+ | [p] -> render_step None a p
+ | (Note _ | Theorem _ | Qed _ as p) :: ps ->
+ render_steps (render_step None a p) ps
+ | p :: ((Branch _ :: _) as ps) ->
+ render_steps (render_step (Some mk_sc) a p) ps
+ | p :: ps ->
+ render_steps (render_step (Some mk_dot) a p) ps
(* interface functions ******************************************************)
-let content2procedural ~ids_to_inner_sorts prefix (_, params, xmenv, obj) =
- if List.length params > 0 || xmenv <> None then assert false;
- match obj with
- | `Def (C.Const, t, `Proof ({C.proof_name = Some name} as p)) ->
- mk_theorem name t :: mk_proof p
- | _ -> assert false
+let content2procedural ~ids_to_inner_sorts prefix cobj =
+ prerr_endline "Phase 2 transformation";
+ let steps = mk_obj ids_to_inner_sorts prefix cobj in
+ prerr_endline "grafite rendering";
+ List.rev (render_steps [] steps)