type context = Y.attrs * D.term list
-type environment = context H.t
-
type context_node = qid option (* context node: None = root *)
type status = {
- henv: environment; (* optimized global environment *)
path: D.id list; (* current section path *)
- hcnt: environment; (* optimized context *)
node: context_node; (* current context node *)
nodes: context_node list; (* context node list *)
line: int; (* line number *)
let henv_size, hcnt_size = 7000, 4300 (* hash tables initial sizes *)
+let henv = H.create henv_size (* optimized global environment *)
+
+let hcnt = H.create hcnt_size (* optimized context *)
+
(* Internal functions *******************************************************)
-let initial_status mk_uri = {
- path = []; node = None; nodes = []; line = 1; mk_uri = mk_uri;
- henv = H.create henv_size; hcnt = H.create hcnt_size
+let initial_status mk_uri =
+ H.clear henv; H.clear hcnt; {
+ path = []; node = None; nodes = []; line = 1; mk_uri = mk_uri
}
let empty_cnt = [], []
| Some qid -> let f qid = f (Some qid) in relax_qid f st qid
let resolve_gref err f st qid =
- try let cnt = H.find st.henv (uri_of_qid qid) in f qid cnt
+ try let cnt = H.find henv (uri_of_qid qid) in f qid cnt
with Not_found -> err qid
let resolve_gref_relaxed f st qid =
let get_cnt err f st = function
| None -> f empty_cnt
| Some qid as node ->
- try let cnt = H.find st.hcnt (uri_of_qid qid) in f cnt
+ try let cnt = H.find hcnt (uri_of_qid qid) in f cnt
with Not_found -> err node
let get_cnt_relaxed f st =
in
xlate_term f st lenv w
| A.GRef (name, args) ->
+ let map1 f = function
+ | Y.Name (id, _) -> f (A.GRef ((id, true, []), []))
+ | _ -> C.err ()
+ in
+ let map2 f = xlate_term f st lenv in
let g qid (a, _) =
let gref = D.TGRef ([], uri_of_qid qid) in
- let map1 f = xlate_term f st lenv in
- let map2 f = function
- | Y.Name (id, _) -> D.resolve_lref Cps.err (mk_lref f) id lenv
- | _ -> assert false
- in
- let f tail =
- let f = function
- | [] -> f gref
- | args -> f (D.TAppl ([], args, gref))
- in
- let f a = C.list_rev_map_append f map2 a ~tail in
- C.list_sub_strict f a args
- in
- C.list_map f map1 args
+ match args with
+ | [] -> f gref
+ | args ->
+ let f args = f (D.TAppl ([], args, gref)) in
+ let f args = f (List.rev_map (map2 C.start) args) in
+ let f a = C.list_rev_map_append f map1 a ~tail:args in
+ C.list_sub_strict f a args
in
let g qid = resolve_gref_relaxed g st qid in
let err () = complete_qid g st name in
let f qid =
let f cnt =
let lenv = lenv_of_cnt cnt in
- let f ww =
- H.add st.hcnt (uri_of_qid qid) (add_abst cnt name ww);
- err {st with node = Some qid}
- in
- xlate_term f st lenv w
+ let ww = xlate_term C.start st lenv w in
+ H.add hcnt (uri_of_qid qid) (add_abst cnt name ww);
+ err {st with node = Some qid}
in
get_cnt_relaxed f st
in
let a, ws = cnt in
let lenv = lenv_of_cnt cnt in
let f qid =
- let f ww =
- H.add st.henv (uri_of_qid qid) cnt;
- let b = Y.Abst (D.TBind (a, D.Abst ws, ww)) in
- let entity = [Y.Mark st.line], uri_of_qid qid, b in
- f {st with line = succ st.line} entity
- in
- xlate_term f st lenv w
+ let ww = xlate_term C.start st lenv w in
+ H.add henv (uri_of_qid qid) cnt;
+ let b = Y.Abst (D.TBind (a, D.Abst ws, ww)) in
+ let entity = [Y.Mark st.line], uri_of_qid qid, b in
+ f {st with line = succ st.line} entity
in
complete_qid f st (name, true, [])
in
let a, ws = cnt in
let lenv = lenv_of_cnt cnt in
let f qid =
- let f ww vv =
- H.add st.henv (uri_of_qid qid) cnt;
- let b = Y.Abbr (D.TBind (a, D.Abst ws, D.TCast ([], ww, vv))) in
- let a =
- if trans then [Y.Mark st.line] else [Y.Mark st.line; Y.Priv]
- in
- let entity = a, uri_of_qid qid, b in
- f {st with line = succ st.line} entity
- in
- let f ww = xlate_term (f ww) st lenv v in
- xlate_term f st lenv w
+ let ww = xlate_term C.start st lenv w in
+ let vv = xlate_term C.start st lenv v in
+ H.add henv (uri_of_qid qid) cnt;
+ let b = Y.Abbr (D.TBind (a, D.Abst ws, D.TCast ([], ww, vv))) in
+ let a = Y.Mark st.line :: if trans then [] else [Y.Priv] in
+ let entity = a, uri_of_qid qid, b in
+ f {st with line = succ st.line} entity
in
complete_qid f st (name, true, [])
in
--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department, University of Bologna, Italy.
+ ||I||
+ ||T|| HELM is free software; you can redistribute it and/or
+ ||A|| modify it under the terms of the GNU General Public License
+ \ / version 2 or (at your option) any later version.
+ \ / This software is distributed as is, NO WARRANTY.
+ V_______________________________________________________________ *)
+
+module C = Cps
+module Y = Entity
+module D = Drg
+module B = Brg
+
+let rec lenv_fold_left map1 map2 x = function
+ | D.ESort -> x
+ | D.EBind (tl, a, b) -> lenv_fold_left map1 map2 (map1 x a b) tl
+ | D.EProj (tl, a, e) -> lenv_fold_left map1 map2 (map2 x a e) tl
+
+let rec xlate_term f = function
+ | D.TSort (a, l) -> f (B.Sort (a, l))
+ | D.TGRef (a, n) -> f (B.GRef (a, n))
+ | D.TLRef (a, _, _) -> let f i = f (B.LRef (a, i)) in Y.apix C.err f a
+ | D.TCast (a, u, t) ->
+ let f uu tt = f (B.Cast (a, uu, tt)) in
+ let f uu = xlate_term (f uu) t in
+ xlate_term f t
+ | D.TAppl (a, vs, t) ->
+ let map f v tt = let f vv = f (B.Appl (a, vv, tt)) in xlate_term f v in
+ let f tt = C.list_fold_right f map vs tt in
+ xlate_term f t
+ | D.TProj (ap, e, D.TCast (ac, u, t)) ->
+ xlate_term f (D.TCast (ac, D.TProj (ap, e, u), D.TProj (ap, e, t)))
+ | D.TProj (a, e, t) ->
+ let f tt = f (lenv_fold_left xlate_bind xlate_proj tt e) in
+ xlate_term f t
+ | D.TBind (a, b, t) ->
+ let f tt = f (xlate_bind tt a b) in xlate_term f t
+
+and xlate_bind x a b = assert false
+
+and xlate_proj x _ e =
+ lenv_fold_left xlate_bind xlate_proj x e
+
+let brg_of_drg f t =
+ f (xlate_term C.start t)