List.nth context ((List.length context) - n - 1)
;;*)
+let mk_sym s = NotationPt.Symbol (s,0);;
+
let discriminate_tac ~context cur_eq status =
pp (lazy (Printf.sprintf "discriminate: equation %s" (name_of_rel ~context cur_eq)));
let dbranch it ~use_jmeq leftno consno =
- let refl_id = mk_id (if use_jmeq then "jmrefl" else "refl") in
+ let refl_id = mk_sym "refl" in
pp (lazy (Printf.sprintf "dbranch %d %d" leftno consno));
let nlist = HExtlib.list_seq 0 (nargs it leftno consno) in
(* (\forall ...\forall P.\forall DH : ( ... = ... -> P). P) *)
let cut_term = mk_prods params (NotationPt.Binder (`Forall, (mk_id "x",
Some xyty),
NotationPt.Binder (`Forall, (mk_id "y", Some xyty),
- NotationPt.Binder (`Forall, (mk_id "e",
- Some (mk_appl [mk_id "eq";NotationPt.Implicit `JustOne; mk_id "x"; mk_id "y"])),
- mk_appl [discr; mk_id "x"; mk_id "y"(*;mk_id "e"*)])))) in
+ (if use_jmeq then fun tgt ->
+ NotationPt.Binder (`Forall, (mk_id "e",
+ Some (mk_appl
+ [mk_sym "jmsimeq"; NotationPt.Implicit `JustOne; mk_id "x";
+ NotationPt.Implicit `JustOne; mk_id "y"])),tgt)
+ else fun tgt ->
+ NotationPt.Binder (`Forall, (mk_id "e",
+ Some (mk_appl [mk_sym "eq";NotationPt.Implicit `JustOne; mk_id "x"; mk_id "y"])),tgt))
+ (mk_appl [discr; mk_id "x"; mk_id "y"(*;mk_id "e"*)])))) in
let status = print_tac (lazy ("cut_term = "^ NotationPp.pp_term status cut_term)) status in
NTactics.cut_tac ("",0, cut_term)
status);
NotationPt.Ident (id,None)
;;
+let mk_sym s = NotationPt.Symbol (s,0);;
+
let rec split_arity status ~subst context te =
match NCicReduction.whd status ~subst context te with
| NCic.Prod (name,so,ta) ->
| hd::tl -> NotationPt.Binder (`Forall, (mk_id hd, None), mk_prods tl t)
;;
-let rec mk_arrows ?(pattern=false) xs ys selection target =
+let rec leibpatt = function
+ | [] -> NotationPt.UserInput
+ | false::sel -> leibpatt sel
+ | true::sel -> NotationPt.Binder (`Forall, (mk_id "_",
+ Some (mk_appl [NotationPt.Implicit `JustOne
+ ;NotationPt.Implicit `JustOne
+ ;NotationPt.Implicit `JustOne
+ ;NotationPt.UserInput])),
+ leibpatt sel);;
+let rec jmeqpatt = function
+ | [] -> NotationPt.UserInput
+ | false::sel -> jmeqpatt sel
+ | true::sel -> NotationPt.Binder (`Forall, (mk_id "_",
+ Some (mk_appl [NotationPt.Implicit `JustOne
+ ;NotationPt.Implicit `JustOne
+ ;NotationPt.Implicit `JustOne
+ ;NotationPt.UserInput
+ ;NotationPt.UserInput])),
+ jmeqpatt sel);;
+
+let rec mk_arrows ~jmeq xs ys selection target =
match selection,xs,ys with
[],[],[] -> target
- | false :: l,x::xs,y::ys -> mk_arrows ~pattern xs ys l target
- | true :: l,x::xs,y::ys ->
- NotationPt.Binder (`Forall, (mk_id "_", Some (mk_appl [if pattern then NotationPt.Implicit `JustOne else mk_id "eq" ; NotationPt.Implicit `JustOne;x;y])),
- mk_arrows ~pattern xs ys l target)
+ | false :: l,x::xs,y::ys -> mk_arrows ~jmeq xs ys l target
+ | true :: l,x::xs,y::ys when jmeq ->
+ NotationPt.Binder (`Forall, (mk_id "_",
+ Some (mk_appl [mk_sym "jmsimeq" ;
+ NotationPt.Implicit `JustOne;x;
+ NotationPt.Implicit `JustOne;y])),
+ mk_arrows ~jmeq xs ys l target)
+ | true :: l,x::xs,y::ys ->
+ NotationPt.Binder (`Forall, (mk_id "_",
+ Some (mk_appl [mk_sym "eq" ;
+ NotationPt.Implicit `JustOne;x;y])),
+ mk_arrows ~jmeq xs ys l target)
| _ -> raise (Invalid_argument "ninverter: the selection doesn't match the arity of the specified inductive type")
;;
status#set_obj(u,h,NCicUntrusted.apply_subst_metasenv status subst metasenv,subst,o)
;;
-let mk_inverter name is_ind it leftno ?selection outsort (status: #NCic.status) baseuri =
+let mk_inverter ~jmeq name is_ind it leftno ?selection outsort (status: #NCic.status) baseuri =
pp (lazy ("leftno = " ^ string_of_int leftno));
let _,ind_name,ty,cl = it in
pp (lazy ("arity: " ^ status#ppterm ~metasenv:[] ~subst:[] ~context:[] ty));
None -> HExtlib.mk_list true (List.length ys)
| Some s -> s
in
- let prods = mk_arrows id_rs id_ys selection pred in
+ let prods = mk_arrows ~jmeq id_rs id_ys selection pred in
let hyplist =
let rec hypaux k = function
let cut_theorem =
let rs = List.map (fun x -> mk_id x) rs in
- mk_arrows rs rs selection (mk_appl (mk_id "P"::rs)) in
+ mk_arrows ~jmeq rs rs selection (mk_appl (mk_id "P"::rs)) in
let cut = mk_appl [NotationPt.Binder (`Lambda, (mk_id "Hcut", Some cut_theorem),
let intros = List.map (fun x -> pp (lazy x); NTactics.intro_tac x) (xs@["P"]@hyplist@["Hterm"]) in
let where =
"",0,(None,[],
- Some (
- mk_arrows ~pattern:true
- (HExtlib.mk_list (NotationPt.Implicit `JustOne) (List.length ys))
- (HExtlib.mk_list NotationPt.UserInput (List.length ys))
- selection NotationPt.UserInput)) in
+ Some (if jmeq then jmeqpatt selection
+ else leibpatt selection)) in
let elim_tac = if is_ind then NTactics.elim_tac else NTactics.cases_tac in
let status =
NTactics.block_tac
NTactics.branch_tac;
NTactics.case_tac "end";
NTactics.apply_tac ("",0,mk_id "Hcut");
- NTactics.apply_tac ("",0,mk_id "refl");
+ NTactics.apply_tac ("",0,mk_sym "refl");
NTactics.shift_tac;
elim_tac ~what:("",0,mk_id "Hterm") ~where;
NTactics.branch_tac ~force:true] @
status,status#obj
;;
+let mk_inverter name is_ind it leftno ?selection outsort status baseuri =
+ try mk_inverter ~jmeq:true name is_ind it leftno ?selection outsort status baseuri
+ with NTacStatus.Error _ ->
+ mk_inverter ~jmeq:false name is_ind it leftno ?selection outsort status baseuri
+;;
qed.
inductive jmeq (A:Type[0]) (x:A) : ∀B:Type[0]. B →Prop ≝
-jmrefl : jmeq A x A x.
+refl_jmeq : jmeq A x A x.
+
+notation < "hvbox(term 46 a break maction (≃) (≃\sub(t,u)) term 46 b)"
+ non associative with precedence 45
+for @{ 'jmsimeq $t $a $u $b }.
+
+notation > "hvbox(n break ≃ m)"
+ non associative with precedence 45
+for @{ 'jmsimeq ? $n ? $m }.
+
+interpretation "john major's equality" 'jmsimeq t x u y = (jmeq t x u y).
+interpretation "john major's reflexivity" 'refl = refl_jmeq.
definition eqProp ≝ λA:Prop.eq A.
qed.
lemma E : ∀A.∀x:A.∀P:∀y:A.jmeq A x A y→Type[0].
- PP ? (P x) (jmrefl A x) → ∀y.∀h:jmeq A x A y.PP ? (P y) h.
+ PP ? (P x) (refl_jmeq A x) → ∀y.∀h:jmeq A x A y.PP ? (P y) h.
#A #a #P #H #b #E letin F ≝ (jm_to_eq_sigma ??? E)
lapply (G ?? (curry ?? P) ?? F)
[ normalize //
qed.
lemma jmeq_elim : ∀A.∀x:A.∀P:∀y:A.jmeq A x A y→Type[0].
- P x (jmrefl A x) → ∀y.∀h:jmeq A x A y.P y h ≝ E.
+ P x (refl_jmeq A x) → ∀y.∀h:jmeq A x A y.P y h ≝ E.
+
+lemma jmeq_to_eq: ∀A:Type[0]. ∀x,y:A. x≃y → x=y.
+ #A #x #y #JMEQ @(jmeq_elim ? x … JMEQ) %
+qed.
+
+coercion jmeq_to_eq: ∀A:Type[0]. ∀x,y:A. ∀p:x≃y.x=y ≝ jmeq_to_eq on _p:?≃? to ?=?.
+
+lemma eq_to_jmeq:
+ ∀A: Type[0].
+ ∀x, y: A.
+ x = y → x ≃ y.
+ //
+qed.