--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A|| This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ \ /
+ V_______________________________________________________________ *)
+
+include "lambda/types.ma".
+
+(*
+inductive TJ: list T → T → T → Prop ≝
+ | ax : ∀i,j. A i j → TJ (nil T) (Sort i) (Sort j)
+ | start: ∀G.∀A.∀i.TJ G A (Sort i) → TJ (A::G) (Rel 0) (lift A 0 1)
+ | weak: ∀G.∀A,B,C.∀i.
+ TJ G A B → TJ G C (Sort i) → TJ (C::G) (lift A 0 1) (lift B 0 1)
+ | prod: ∀G.∀A,B.∀i,j,k. R i j k →
+ TJ G A (Sort i) → TJ (A::G) B (Sort j) → TJ G (Prod A B) (Sort k)
+ | app: ∀G.∀F,A,B,a.
+ TJ G F (Prod A B) → TJ G a A → TJ G (App F a) (subst B 0 a)
+ | abs: ∀G.∀A,B,b.∀i.
+ TJ (A::G) b B → TJ G (Prod A B) (Sort i) → TJ G (Lambda A b) (Prod A B)
+ | conv: ∀G.∀A,B,C.∀i. conv B C →
+ TJ G A B → TJ G C (Sort i) → TJ G A C
+ | dummy: ∀G.∀A,B.∀i.
+ TJ G A B → TJ G B (Sort i) → TJ G (D A) B.
+ axiom prod_inv : ∀G,M,P,Q. G ⊢ M : Prod P Q →
+ ∃i. P::G ⊢ Q : Sort i. *)
+
+axiom lambda_lift : ∀A,B,C. lift A 0 1 = Lambda B C →
+∃P,Q. A = Lambda P Q ∧ lift P 0 1 = B ∧ lift Q 1 1 = C.
+
+axiom prod_lift : ∀A,B,C. lift A 0 1 = Prod B C →
+∃P,Q. A = Prod P Q ∧ lift P 0 1 = B ∧ lift Q 1 1 = C.
+
+axiom conv_lift: ∀M,N. conv M N → conv (lift M 0 1) (lift N 0 1).
+
+axiom weak_in: ∀G.∀A,B,M,N.∀i.A::G ⊢ M : N → G ⊢ B : Sort i →
+ (lift A 0 1)::B::G ⊢ lift M 1 1 : lift N 1 1.
+
+axiom refl_conv: ∀A. conv A A.
+axiom sym_conv: ∀A,B. conv A B → conv B A.
+axiom trans_conv: ∀A,B,C. conv A B → conv B C → conv A C.
+
+theorem prod_inv: ∀G,M,N. G ⊢ M : N → ∀A,B.M = Prod A B →
+ ∃i,j,k. conv N (Sort k) ∧ G ⊢A : Sort i ∧ A::G ⊢B : Sort j.
+#G #M #N #t (elim t);
+ [#i #j #Aij #A #b #H destruct
+ |#G1 #P #i #t #_ #A #b #H destruct
+ |#G1 #P #Q #R #i #t1 #t2 #H1 #_ #A #B #Hl
+ cases (prod_lift … Hl) #A1 * #B1 * * #eqP #eqA #eqB
+ cases (H1 … eqP) #i * #j * #k * * #c1 #t3 #t4
+ @(ex_intro … i) @(ex_intro … j) @(ex_intro … k) <eqA <eqB %
+ [% [@(conv_lift … c1) |@(weak … t3 t2)]
+ |@(weak_in … t4 t2)
+ ]
+ |#G1 #A #B #i #j #k #Rijk #t1 #t2 #_ #_ #A1 #B1 #H destruct
+ @(ex_intro … i) @(ex_intro … j) @(ex_intro … k) % // % //
+ |#G1 #P #A #B #C #t1 #t2 #_ #_ #A1 #B1 #H destruct
+ |#G1 #P #A #B #i #t1 #t2 #_ #_ #A1 #B1 #H destruct
+ |#G1 #A #B #C #i #cBC #t1 #t2 #H1 #H2 #A1 #B1 #eqA
+ cases (H1 … eqA) #i * #j * #k * * #c1 #t3 #t4
+ @(ex_intro … i) @(ex_intro … j) @(ex_intro … k) % //
+ % // @(trans_conv C B … c1) @sym_conv //
+ |#G1 #A #B #i #t1 #t2 #_ #_ #A1 #B1 #eqA destruct
+ ]
+qed.
+
+theorem abs_inv: ∀G,M,N. G ⊢ M : N → ∀A,b.M = Lambda A b →
+ ∃i,B. conv N (Prod A B) ∧ G ⊢Prod A B: Sort i ∧ A::G ⊢b : B.
+#G #M #N #t (elim t);
+ [#i #j #Aij #A #b #H destruct
+ |#G1 #P #i #t #_ #A #b #H destruct
+ |#G1 #P #Q #R #i #t1 #t2 #H1 #_ #A #b #Hl
+ cases (lambda_lift … Hl) #A1 * #b1 * * #eqP #eqA #eqb
+ cases (H1 … eqP) #i * #B1 * * #c1 #t3 #t4
+ @(ex_intro … i) @(ex_intro … (lift B1 1 1)) <eqA <eqb %
+ [% [@(conv_lift … c1) |@(weak … t3 t2)]
+ |@(weak_in … t4 t2)
+ ]
+ |#G1 #A #B #i #j #k #Rijk #t1 #t2 #_ #_ #A1 #b #H destruct
+ |#G1 #P #A #B #C #t1 #t2 #_ #_ #A1 #b #H destruct
+ |#G1 #P #A #B #i #t1 #t2 #_ #_ #A1 #b #H destruct
+ @(ex_intro … i) @(ex_intro … A) % // % //
+ |#G1 #A #B #C #i #cBC #t1 #t2 #H1 #H2 #A1 #b #eqA
+ cases (H1 … eqA) #i * #B1 * * #c1 #t3 #t4
+ @(ex_intro … i) @(ex_intro … B1) % //
+ % // @(trans_conv C B … c1) @sym_conv //
+ |#G1 #A #B #i #t1 #t2 #_ #_ #A1 #b #eqA destruct
+ ]
+qed.
+
--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A|| This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ \ /
+ V_______________________________________________________________ *)
+
+include "lambda/reduction.ma".
+include "lambda/inversion.ma".
+
+(*
+inductive T : Type[0] ≝
+ | Sort: nat → T
+ | Rel: nat → T
+ | App: T → T → T
+ | Lambda: T → T → T (* type, body *)
+ | Prod: T → T → T (* type, body *)
+ | D: T →T
+.
+
+inductive red : T →T → Prop ≝
+ | rbeta: ∀P,M,N. red (App (Lambda P M) N) (M[0 ≝ N])
+ | rdapp: ∀M,N. red (App (D M) N) (D (App M N))
+ | rdlam: ∀M,N. red (Lambda M (D N)) (D (Lambda M N))
+ | rappl: ∀M,M1,N. red M M1 → red (App M N) (App M1 N)
+ | rappr: ∀M,N,N1. red N N1 → red (App M N) (App M N1)
+ | rlaml: ∀M,M1,N. red M M1 → red (Lambda M N) (Lambda M1 N)
+ | rlamr: ∀M,N,N1. red N N1 → red(Lambda M N) (Lambda M N1)
+ | rprodl: ∀M,M1,N. red M M1 → red (Prod M N) (Prod M1 N)
+ | rprodr: ∀M,N,N1. red N N1 → red (Prod M N) (Prod M N1)
+ | d: ∀M,M1. red M M1 → red (D M) (D M1). *)
+
+lemma lift_D: ∀M,N. lift M 0 1 = D N →
+ ∃P. N = lift P 0 1 ∧ M = D P.
+#M (cases M) normalize
+ [#i #N #H destruct
+ |#i #N #H destruct
+ |#A #B #N #H destruct
+ |#A #B #N #H destruct
+ |#A #B #N #H destruct
+ |#A #N #H destruct @(ex_intro … A) /2/
+ ]
+qed.
+
+theorem type_of_type: ∀G,A,B. G ⊢ A : B → (∀i. B ≠ Sort i) →
+ ∃i. G ⊢ B : Sort i.
+#G #A #B #t (elim t)
+ [#i #j #Aij #j @False_ind /2/
+ |#G1 #A #i #t1 #_ #P @(ex_intro … i) @(weak … t1 t1)
+ |#G1 #A #B #C #i #t1 #t2 #H1 #H2 #H3 (cases (H1 ?) )
+ [#i #Bi @(ex_intro … i) @(weak … Bi t2)
+ |#i @(not_to_not … (H3 i)) //
+ ]
+ |#G1 #A #B #i #j #k #h #t1 #t2 #_ #_ #H3 @False_ind /2/
+ |#G1 #A #B #C #D #t1 #t2 #H1 #H2 #H3 cases (H1 ?);
+ [#i #t3 cases (prod_inv … t3 … (refl …))
+ #s1 * #s2 * #s3 * * #Ci #H4 #H5 @(ex_intro … s2)
+ @(tj_subst_0 … t2 … H5)
+ |#i % #H destruct
+ ]
+ |#G1 #A #B #C #i #t1 #t2 #H1 #H2 #H3 /2/
+ |#G1 #A #B #C #i #ch #t1 #t2 #H1 #H2 #H3 /2/
+ |#G1 #A #B #i #t1 #t2 #Hind1 #Hind2 #H /2/
+ ]
+qed.
+
+lemma prod_sort : ∀G,M,P,Q. G ⊢ M :Prod P Q →
+ ∃i. P::G ⊢ Q : Sort i.
+#G #M #P #Q #t cases(type_of_type …t ?);
+ [#s #t2 cases(prod_inv … t2 …(refl …)) #s1 * #s2 * #s3 * *
+ #_ #_ #H @(ex_intro … s2) //
+ | #i % #H destruct
+ ]
+qed.
+
+axiom red_lift: ∀M,N. red (lift M 0 1) N →
+ ∃P. N = lift P 0 1 ∧ red M P.
+
+theorem tj_d : ∀G,M,N. G ⊢ D M : N → G ⊢ M : N.
+#G (cut (∀M,N. G ⊢ M : N → ∀P. M = D P → G ⊢ P : N)) [2: /2/]
+#M #N #t (elim t)
+ [#i #j #Aij #P #H destruct
+ |#G1 #A #i #t1 #_ #P #H destruct
+ |#G1 #A #B #C #i #t1 #t2 #H1 #H2 #P #H3
+ cases (lift_D … H3) #P * #eqP #eqA >eqP @(weak … i) /2/
+ |#G1 #A #B #i #j #k #h #t1 #t2 #_ #_ #P #H destruct
+ |#G1 #A #B #C #D #t1 #t2 #_ #_ #P #H destruct
+ |#G1 #A #B #C #D #t1 #t2 #_ #_ #P #H destruct
+ |#G1 #A #B #C #i #ch #t1 #t2 #H #_ #P #H
+ @(conv… ch …t2) /2/
+ |#G1 #A #B #i #t1 #t2 #Hind1 #Hind2 #P #H destruct //
+ ]
+qed.
+
+definition red0 ≝ λM,N. M = N ∨ red M N.
+
+axiom conv_lift: ∀i,M,N. conv M N →
+ conv (lift M 0 i) (lift N 0 i).
+axiom red_to_conv : ∀M,N. red M N → conv M N.
+axiom refl_conv: ∀M. conv M M.
+axiom sym_conv: ∀M,N. conv M N → conv N M.
+axiom red0_to_conv : ∀M,N. red0 M N → conv M N.
+axiom conv_prod: ∀A,B,M,N. conv A B → conv M N →
+ conv (Prod A M) (Prod B N).
+axiom conv_subst_1: ∀M,P,Q. red P Q → conv (M[0≝Q]) (M[0≝P]).
+
+inductive redG : list T → list T → Prop ≝
+ | rnil : redG (nil T) (nil T)
+ | rstep : ∀A,B,G1,G2. red0 A B → redG G1 G2 →
+ redG (A::G1) (B::G2).
+
+lemma redG_inv: ∀A,G,G1. redG (A::G) G1 →
+ ∃B. ∃G2. red0 A B ∧ redG G G2 ∧ G1 = B::G2.
+#A #G #G1 #rg (inversion rg)
+ [#H destruct
+ |#A1 #B1 #G2 #G3 #r1 #r2 #_ #H destruct
+ #H1 @(ex_intro … B1) @(ex_intro … G3) % // % //
+ ]
+qed.
+
+lemma redG_nil: ∀G. redG (nil T) G → G = nil T.
+#G #rg (inversion rg) //
+#A #B #G1 #G2 #r1 #r2 #_ #H destruct
+qed.
+
+(*
+inductive redG : list T → list T → Prop ≝
+ |redT : ∀A,B,G1,G2. red A B → redG G1 G2 →
+ redG (A::G1) (B::G2)
+ |redF : ∀A,G1,G2. redG G1 G2 → redG (A::G1) (A::G2).
+
+lemma redG_inv: ∀A,G,G1. redG (A::G) G1 →
+ ∃B. ∃G2. red0 A B ∧ redG G G2 ∧ G1 = B::G2.
+#A #G #G1 #rg (inversion rg)
+ [#H destruct
+ |#A1 #B1 #G2 #G3 #r1 #r2 #_ #H destruct
+ #H1 @(ex_intro … B1) @(ex_intro … G3) % // % //
+ ]
+qed. *)
+
+axiom conv_prod_split: ∀A,A1,B,B1. conv (Prod A B) (Prod A1 B1) →
+conv A A1 ∧ conv B B1.
+
+axiom red0_prod : ∀M,N,P. red0 (Prod M N) P →
+ (∃Q. P = Prod Q N ∧ red0 M Q) ∨
+ (∃Q. P = Prod M Q ∧ red0 N Q).
+
+axiom my_dummy: ∀G,M,N. G ⊢ M : N → G ⊢ D M : N.
+
+theorem subject_reduction: ∀G,M,N. TJ G M N → ∀M1. red0 M M1 →
+∀G1. redG G G1 → TJ G1 M1 N.
+#G #M #N #d (elim d)
+ [#i #j #Aij #M1 *
+ [#eqM1 <eqM1 #G1 #H >(redG_nil …H) /2/
+ |#H @False_ind /2/
+ ]
+ |#G1 #A #i #t1 #Hind #M1 *
+ [#eqM1 <eqM1 #G2 #H cases (redG_inv … H)
+ #P * #G3 * * #r1 #r2 #eqG2 >eqG2
+ @(conv ?? (lift P O 1) ? i);
+ [@conv_lift @sym_conv @red0_to_conv //
+ |@(start … i) @Hind //
+ |@(weak … (Sort i) ? i); [@Hind /2/ | @Hind //]
+ ]
+ |#H @False_ind /2/
+ ]
+ |#G1 #A #B #C #i #t1 #t2 #H1 #H2 #M1
+ #H cases H;
+ [#eqM1 <eqM1 #G2 #rg (cases (redG_inv … rg))
+ #Q * #G3 * * #r2 #rg1 #eqG2 >eqG2 @(weak … i);
+ [@H1 /2/ | @H2 //]
+ |#H (elim (red_lift … H)) #P * #eqM1 >eqM1 #redAP
+ #G2 #rg (cases (redG_inv … rg)) #Q * #G3 * * #r2
+ #rg1 #eqG2 >eqG2 @(weak … i);
+ [@H1 /2/ | @H2 //]
+ ]
+ |#G #A #B #i #j #k #Rjk #t1 #t2 #Hind1 #Hind2 #M1 #redP
+ (cases (red0_prod … redP))
+ [* #M2 * #eqM1 #redA >eqM1 #G1 #rg @(prod … Rjk);
+ [@Hind1 // | @Hind2 /2/]
+ |* #M2 * #eqM1 #redA >eqM1 #G1 #rg @(prod … Rjk);
+ [@Hind1 /2/ | @Hind2 /3/]
+ ]
+ |#G #A #B #C #P #t1 #t2 #Hind1 #Hind2 #M1 #red0a
+ (cases red0a)
+ [#eqM1 <eqM1 #G1 #rg @(app … B);
+ [@Hind1 /2/ | @Hind2 /2/ ]
+ |#reda (cases (red_app …reda))
+ [*
+ [*
+ [* #M2 * #N1 * #eqA #eqM1 >eqM1 #G1 #rg
+ cut (G1 ⊢ A: Prod B C); [@Hind1 /2/] #H1
+ (cases (abs_inv … H1 … eqA)) #i * #N2 * *
+ #cProd #t3 #t4
+ (cut (conv B M2 ∧ conv C N2) ) [/2/] * #convB #convC
+ (cases (prod_inv … t3 … (refl …) )) #i * #j * #k * *
+ #cik #t5 #t6 (cut (G1 ⊢ P:B))
+ [@Hind2 /2/
+ |#Hcut cut (G1 ⊢ N1[0:=P] : N2 [0:=P]);
+ [@(tj_subst_0 … M2) // @(conv … convB Hcut t5)
+ |#Hcut1 cases (prod_sort … H1) #s #Csort
+ @(conv … s … Hcut1);
+ [@conv_subst /2/ | @(tj_subst_0 … Csort) //]
+ ]
+ ]
+ |* #M2 * #eqA #eqM1 >eqM1 #G1 #rg
+ cut (G1 ⊢ A:Prod B C); [@Hind1 /2/] #t3
+ cases (prod_sort …t3) #i #Csort @(dummy … i);
+ [ @(app … B);
+ [@tj_d @Hind1 /2/|@Hind2 /2/]
+ | @(tj_subst_0 … B … (Sort i));
+ [@Hind2 /2/
+ |//
+ ]
+ ]
+ (* @my_dummy @(app … B); [@tj_d @Hind1 /2/|@Hind2 /2/]
+ *)
+ ]
+ |* #M2 * #eqM1 >eqM1 #H #G1 #rg @(app … B);
+ [@Hind1 /2/ | @Hind2 /2/]
+ ]
+ |* #M2 * #eqM1 >eqM1 #H #G1 #rg
+ cut (G1 ⊢ A:Prod B C); [@Hind1 /2/] #t3
+ cases (prod_sort …t3) #i #Csort @(conv ?? C[O≝ M2] … i);
+ [@conv_subst_1 //
+ |@(app … B) // @Hind2 /2/
+ |@(tj_subst_0 … Csort) @Hind2 /2/
+ ]
+ ]
+ ]
+ |#G #A #B #C #i #t1 #t2 #Hind1 #Hind2 #M2 #red0l #G1 #rg
+ cut (A::G1⊢C:B); [@Hind1 /3/] #t3
+ cut (G1 ⊢ Prod A B : Sort i); [@Hind2 /2/] #t4
+ cases red0l;
+ [#eqM2 <eqM2 @(abs … t3 t4)
+ |#redl (cases (red_lambda … redl))
+ [*
+ [* #M3 * #eqM2 #redA >eqM2
+ @(conv ?? (Prod M3 B) … t4);
+ [@conv_prod /2/
+ |@(abs … i); [@Hind1 /3/ |@Hind2 /3/]
+ ]
+ |* #M3 * #eqM3 #redC >eqM3
+ @(abs … t4) @Hind1 /3/
+ ]
+ |* #Q * #eqC #eqM2 >eqM2 @(dummy … t4)
+ @(abs … t4) @tj_d @Hind1 /3/
+ ]
+ ]
+ |#G #A #B #C #i #convBC #t1 #t2 #Hind1 #Hind2 #M1 #redA
+ #G1 #rg @(conv … i … convBC); [@Hind1 // |@Hind2 /2/]
+ |#G #A #B #i #t1 #t2 #Hind1 #Hind2 #M1 #red0d #G1 #rg
+ cases red0d;
+ [#eqM1 <eqM1 @(dummy … i); [@Hind1 /2/ |@Hind2 /2/]
+ |#redd (cases (red_d … redd)) #Q * #eqM1 #redA >eqM1
+ @(dummy … i);[@Hind1 /2/ |@Hind2 /2/]
+ ]
+qed.
+