include "basic_2/dynamic/cnv_cpce.ma".
+lemma pippo (h) (a) (G) (L0):
+ ∀T0. ⦃G,L0⦄ ⊢ T0 ![h,a] →
+ ∀n,T1. ⦃G,L0⦄ ⊢ T0 ➡[n,h] T1 → ∀T2. ⦃G,L0⦄ ⊢ T0 ⬌η[h] T2 →
+ ∀L1. ⦃G,L0⦄ ⊢ ➡[h] L1 →
+ ∃∃T. ⦃G,L1⦄ ⊢ T1 ⬌η[h] T & ⦃G,L0⦄ ⊢ T2 ➡[n,h] T.
+#h #a #G #L0 * *
+[ #s #_ #n #X1 #HX1 #X2 #HX2 #L1 #HL01
+ elim (cpm_inv_sort1 … HX1) -HX1 #H #Hn destruct
+ lapply (cpce_inv_sort_sn … HX2) -HX2 #H destruct
+ /3 width=3 by cpce_sort, cpm_sort, ex2_intro/
+| #i #_ #n #X1 #HX1 #X2 #HX2 #L1 #HL01
+ elim (drops_F_uni L0 i)
+ [
+ | *
+
(*
lemma cpce_inv_eta_drops (h) (n) (G) (L) (i):
∀X. ⦃G,L⦄ ⊢ #i ⬌η[h] X →
∀p,V1,U. ⦃G,K⦄ ⊢ W ➡*[n,h] ⓛ{p}V1.U →
∀V2. ⦃G,K⦄ ⊢ V1 ⬌η[h] V2 →
∀W2. ⇧*[↑i] V2 ≘ W2 → X = +ⓛW2.ⓐ#0.#↑i.
-*)
-
theorem cpce_mono_cnv (h) (a) (G) (L):
∀T. ⦃G,L⦄ ⊢ T ![h,a] →
∀T1. ⦃G,L⦄ ⊢ T ⬌η[h] T1 → ∀T2. ⦃G,L⦄ ⊢ T ⬌η[h] T2 → T1 = T2.
-#h #a #G #L #T #HT
+#h #a #G #L #T #HT
+*)