napply oa_leq_refl.
nqed.
-lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p.
- intros;
- apply (. (or_prop2 : ?));
- apply oa_leq_refl.
-qed.
+nlemma lemma_10_2_b: ∀S,T.∀R:ORelation S T.∀p. R⎻ (R⎻* p) ≤ p.
+ #S; #T; #R; #p;
+ napply (. (or_prop2 …));
+ napply oa_leq_refl.
+nqed.
-lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p).
- intros;
- apply (. (or_prop1 : ?)^-1);
- apply oa_leq_refl.
-qed.
+nlemma lemma_10_2_c: ∀S,T.∀R:ORelation S T.∀p. p ≤ R* (R p).
+ #S; #T; #R; #p;
+ napply (. (or_prop1 … p …)^-1);
+ napply oa_leq_refl.
+nqed.
-lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p.
- intros;
- apply (. (or_prop1 : ?));
- apply oa_leq_refl.
-qed.
+nlemma lemma_10_2_d: ∀S,T.∀R:ORelation S T.∀p. R (R* p) ≤ p.
+ #S; #T; #R; #p;
+ napply (. (or_prop1 …));
+ napply oa_leq_refl.
+nqed.
-lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p.
- intros; apply oa_leq_antisym;
- [ apply lemma_10_2_b;
- | apply f_minus_image_monotone;
- apply lemma_10_2_a; ]
-qed.
+nlemma lemma_10_3_a: ∀S,T.∀R:ORelation S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p.
+ #S; #T; #R; #p; napply oa_leq_antisym
+ [ napply lemma_10_2_b
+ | napply f_minus_image_monotone;
+ napply lemma_10_2_a ]
+nqed.
-lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p.
- intros; apply oa_leq_antisym;
- [ apply f_star_image_monotone;
- apply (lemma_10_2_d ?? R p);
- | apply lemma_10_2_c; ]
-qed.
+nlemma lemma_10_3_b: ∀S,T.∀R:ORelation S T.∀p. R* (R (R* p)) = R* p.
+ #S; #T; #R; #p; napply oa_leq_antisym
+ [ napply f_star_image_monotone;
+ napply (lemma_10_2_d ?? R p)
+ | napply lemma_10_2_c ]
+nqed.
-lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p.
- intros; apply oa_leq_antisym;
- [ apply lemma_10_2_d;
- | apply f_image_monotone;
- apply (lemma_10_2_c ?? R p); ]
-qed.
+nlemma lemma_10_3_c: ∀S,T.∀R:ORelation S T.∀p. R (R* (R p)) = R p.
+ #S; #T; #R; #p; napply oa_leq_antisym
+ [ napply lemma_10_2_d
+ | napply f_image_monotone;
+ napply (lemma_10_2_c ?? R p) ]
+nqed.
-lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p.
- intros; apply oa_leq_antisym;
- [ apply f_minus_star_image_monotone;
- apply (lemma_10_2_b ?? R p);
- | apply lemma_10_2_a; ]
-qed.
+nlemma lemma_10_3_d: ∀S,T.∀R:ORelation S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p.
+ #S; #T; #R; #p; napply oa_leq_antisym
+ [ napply f_minus_star_image_monotone;
+ napply (lemma_10_2_b ?? R p)
+ | napply lemma_10_2_a ]
+nqed.
-lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p).
- intros; apply (†(lemma_10_3_a ?? R p));
-qed.
+nlemma lemma_10_4_a: ∀S,T.∀R:ORelation S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p).
+ #S; #T; #R; #p; napply (†(lemma_10_3_a …)).
+nqed.
-lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p).
-intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p));
-qed.
+nlemma lemma_10_4_b: ∀S,T.∀R:ORelation S T.∀p. R (R* (R (R* p))) = R (R* p).
+ #S; #T; #R; #p; napply (†(lemma_10_3_b …));
+nqed.
-lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U).
- intros; split; intro; apply oa_overlap_sym; assumption.
-qed.
\ No newline at end of file
+nlemma oa_overlap_sym': ∀o:OAlgebra.∀U,V:o. (U >< V) = (V >< U).
+ #o; #U; #V; @; #H; napply oa_overlap_sym; nassumption.
+nqed.
\ No newline at end of file