definition constructible ≝ λs. CF s s.
+lemma constr_comp : ∀s1,s2. constructible s1 → constructible s2 →
+ (∀x. x ≤ s2 x) → constructible (s2 ∘ s1).
+#s1 #s2 #Hs1 #Hs2 #Hle @(CF_comp … Hs1 Hs2) @O_plus @le_to_O #x [@Hle | //]
+qed.
+
+lemma ext_constr: ∀s1,s2. (∀x.s1 x = s2 x) →
+ constructible s1 → constructible s2.
+#s1 #s2 #Hext #Hs1 @(ext_CF … Hext) @(monotonic_CF … Hs1) #x >Hext //
+qed.
+
(********************************* simulation *********************************)
axiom sU : nat → nat.
*)
lemma compl_g6: ∀h.
- (∀x.MSC x≤h (S (fst (snd x))) (fst x)) →
constructible (λx. h (fst x) (snd x)) →
- (CF (λx. sU 〈fst (snd x),〈fst x,h (S (fst (snd x))) (fst x)〉〉)
+ (CF (λx. sU 〈max (fst (snd x)) (snd (snd x)),〈fst x,h (S (fst (snd x))) (fst x)〉〉)
(λp.termb (fst (snd p)) (fst p) (h (S (fst (snd p))) (fst p)))).
-#h #hle #hconstr @(ext_CF (termb_aux h))
+#h #hconstr @(ext_CF (termb_aux h))
[#n normalize >fst_pair >snd_pair >fst_pair >snd_pair // ]
-@(CF_comp … (λx.h (S (fst (snd x))) (fst x)) … CF_termb)
+@(CF_comp … (λx.MSC x + h (S (fst (snd x))) (fst x)) … CF_termb)
[@CF_comp_pair
[@CF_comp_fst @(monotonic_CF … CF_snd) #x //
|@CF_comp_pair
]
]
]
- |@O_plus [@le_to_O #n @sU_le | // ]
+ |@O_plus
+ [@O_plus
+ [@(O_trans … (λx.MSC (fst x) + MSC (max (fst (snd x)) (snd (snd x)))))
+ [%{2} %{0} #x #_ cases (surj_pair x) #a * #b #eqx >eqx
+ >fst_pair >snd_pair @(transitive_le … (MSC_pair …))
+ >distributive_times_plus @le_plus [//]
+ cases (surj_pair b) #c * #d #eqb >eqb
+ >fst_pair >snd_pair @(transitive_le … (MSC_pair …))
+ whd in ⊢ (??%); @le_plus
+ [@monotonic_MSC @(le_maxl … (le_n …))
+ |>commutative_times <times_n_1 @monotonic_MSC @(le_maxr … (le_n …))
+ ]
+ |@O_plus [@le_to_O #x @sU_le_x |@le_to_O #x @sU_le_i]
+ ]
+ |@le_to_O #n @sU_le
+ ]
+ |@le_to_O #x @monotonic_sU // @(le_maxl … (le_n …)) ]
]
qed.
-
-
-definition faux1 ≝ λh.
+
+(* definition faux1 ≝ λh.
(λx.MSC x + (snd (snd x)-fst x)*(λx.sU 〈fst (snd x),〈fst x,h (S (fst (snd x))) (fst x)〉〉) 〈snd (snd x),x〉).
(* complexity of min_input *)
(λp:ℕ.min_input h (fst p) (snd (snd p))).
#h #hle #hcostr #hmono @(monotonic_CF … (faux1 h))
[#n normalize >fst_pair >snd_pair //]
-@compl_g5 [2:@(compl_g6 h hle hcostr)] #n #x #y #lexy >fst_pair >snd_pair
+@compl_g5 [2:@(compl_g6 h hcostr)] #n #x #y #lexy >fst_pair >snd_pair
>fst_pair >snd_pair @monotonic_sU // @hmono @lexy
-qed.
+qed.*)
definition big : nat →nat ≝ λx.
let m ≝ max (fst x) (snd x) in 〈m,m〉.
[@(le_maxl … (le_n …)) | @(le_maxr … (le_n …))]
qed.
+definition faux2 ≝ λh.
+ (λx.MSC x + (snd (snd x)-fst x)*
+ (λx.sU 〈max (fst(snd x)) (snd(snd x)),〈fst x,h (S (fst (snd x))) (fst x)〉〉) 〈snd (snd x),x〉).
+
+(* proviamo con x *)
+lemma compl_g7: ∀h.
+ constructible (λx. h (fst x) (snd x)) →
+ (∀n. monotonic ? le (h n)) →
+ CF (λx.MSC x + (snd (snd x)-fst x)*sU 〈max (fst x) (snd x),〈snd (snd x),h (S (fst x)) (snd (snd x))〉〉)
+ (λp:ℕ.min_input h (fst p) (snd (snd p))).
+#h #hcostr #hmono @(monotonic_CF … (faux2 h))
+ [#n normalize >fst_pair >snd_pair //]
+@compl_g5 [2:@(compl_g6 h hcostr)] #n #x #y #lexy >fst_pair >snd_pair
+>fst_pair >snd_pair @monotonic_sU // @hmono @lexy
+qed.
+
(* proviamo con x *)
lemma compl_g71: ∀h.
- (∀x.MSC x≤h (S (fst (snd x))) (fst x)) →
constructible (λx. h (fst x) (snd x)) →
(∀n. monotonic ? le (h n)) →
CF (λx.MSC (big x) + (snd (snd x)-fst x)*sU 〈max (fst x) (snd x),〈snd (snd x),h (S (fst x)) (snd (snd x))〉〉)
(λp:ℕ.min_input h (fst p) (snd (snd p))).
-#h #hle #hcostr #hmono @(monotonic_CF … (compl_g7 h hle hcostr hmono)) #x
+#h #hcostr #hmono @(monotonic_CF … (compl_g7 h hcostr hmono)) #x
@le_plus [@monotonic_MSC //]
cases (decidable_le (fst x) (snd(snd x)))
- [#Hle @le_times // @monotonic_sU // @(le_maxl … (le_n … ))
+ [#Hle @le_times // @monotonic_sU
|#Hlt >(minus_to_0 … (lt_to_le … )) [// | @not_le_to_lt @Hlt]
]
qed.
(* axiom daemon : False. *)
lemma compl_g9 : ∀h.
- (∀x.MSC x≤h (S (fst (snd x))) (fst x)) →
- (∀x.MSC x≤h (S (fst x)) (snd(snd x))) →
constructible (λx. h (fst x) (snd x)) →
(∀n. monotonic ? le (h n)) →
(∀n,a,b. a ≤ b → b ≤ n → h b n ≤ h a n) →
CF (λx. (S (snd x-fst x))*MSC 〈x,x〉 +
(snd x-fst x)*(S(snd x-fst x))*sU 〈x,〈snd x,h (S (fst x)) (snd x)〉〉)
(auxg h).
-#h #hle #hle1 #hconstr #hmono #hantimono
-@(compl_g2 h ??? (compl_g3 … (compl_g71 h hle hconstr hmono)) (compl_g81 h hle1 hconstr))
+#h #hconstr #hmono #hantimono
+@(compl_g2 h ??? (compl_g3 … (compl_g71 h hconstr hmono)) (compl_g8 h hconstr))
@O_plus
[@O_plus_l @le_to_O #x >(times_n_1 (MSC x)) >commutative_times @le_times
[// | @monotonic_MSC // ]]
qed.
lemma compl_g11 : ∀h.
- (∀x.MSC x≤h (S (fst (snd x))) (fst x)) →
- (∀x.MSC x≤h (S (fst x)) (snd(snd x))) →
constructible (λx. h (fst x) (snd x)) →
(∀n. monotonic ? le (h n)) →
(∀n,a,b. a ≤ b → b ≤ n → h b n ≤ h a n) →
CF (sg h) (unary_g h).
-#h #hle #hle1 #hconstr #Hm #Ham @compl_g1 @(compl_g9 h hle hle1 hconstr Hm Ham)
+#h #hconstr #Hm #Ham @compl_g1 @(compl_g9 h hconstr Hm Ham)
qed.
(**************************** closing the argument ****************************)
d*(S d)*sU 〈〈b-d,b〉,〈b,r (h_of_aux r c d1 b)〉〉].
lemma h_of_aux_O: ∀r,c,b.
- h_of_aux r c O b = c (* MSC 〈〈b,b〉,〈b,b〉〉*) .
+ h_of_aux r c O b = c.
// qed.
lemma h_of_aux_S : ∀r,c,d,b.
h_of_aux r (MSC 〈〈m,m〉,〈m,m〉〉) (b - a) b.
#r #a #b normalize >fst_pair >snd_pair //
qed.
-
-lemma h_le1 : ∀r.(∀x. x ≤ r x) → monotonic ? le r →
-(∀x:ℕ.MSC x≤r (h_of r 〈S (fst x),snd (snd x)〉)).
-#r #Hr #Hmono #x @(transitive_le ???? (Hr …))
->h_of_def
(* (∀x.MSC x≤h (S (fst x)) (snd(snd x))) → *)
[@monotonic_MSC @le_pair @le_pair @Hmax |/2 by monotonic_le_minus_l/ |@leab]
qed.
+axiom h_of_constr : ∀r:nat →nat.
+ (∀x. x ≤ r x) → monotonic ? le r → constructible r →
+ constructible (h_of r).
+
lemma speed_compl: ∀r:nat →nat.
- (∀x. x ≤ r x) → monotonic ? le r →
+ (∀x. x ≤ r x) → monotonic ? le r → constructible r →
CF (h_of r) (unary_g (λi,x. r(h_of r 〈i,x〉))).
-#r #Hr #Hmono @(monotonic_CF … (compl_g11 …))
+#r #Hr #Hmono #Hconstr @(monotonic_CF … (compl_g11 …))
[#x cases (surj_pair x) #a * #b #eqx >eqx
>sg_def cases (decidable_le b a)
[#leba >(minus_to_0 … leba) normalize in ⊢ (?%?);
cut (max b n = n)
[normalize >(le_to_leb_true … lebn) %] #Hmaxb
>Hmaxa >Hmaxb @Hmono @(mono_h_of_aux r … Hr Hmono) // /2 by monotonic_le_minus_r/
- |#n #a #b #leab @Hmono @(mono_h_of2 … Hr Hmono … leab)
+ |#n #a #b #leab @Hmono @(mono_h_of2 … Hr Hmono … leab)
+ |@(constr_comp … Hconstr Hr) @(ext_constr (h_of r))
+ [#x cases (surj_pair x) #a * #b #eqx >eqx >fst_pair >snd_pair //]
+ @(h_of_constr r Hr Hmono Hconstr)
]
qed.
axiom smn: ∀f,s. CF s f → ∀x. CF (λy.s 〈x,y〉) (λy.f 〈x,y〉).
lemma speed_compl_i: ∀r:nat →nat.
- (∀x. x ≤ r x) → monotonic ? le r →
+ (∀x. x ≤ r x) → monotonic ? le r → constructible r →
∀i. CF (λx.h_of r 〈i,x〉) (λx.g (λi,x. r(h_of r 〈i,x〉)) i x).
-#r #Hr #Hmono #i
+#r #Hr #Hmono #Hconstr #i
@(ext_CF (λx.unary_g (λi,x. r(h_of r 〈i,x〉)) 〈i,x〉))
[#n whd in ⊢ (??%%); @eq_f @sym_eq >fst_pair >snd_pair %]
-@smn @(ext_CF … (speed_compl r Hr Hmono)) #n //
+@smn @(ext_CF … (speed_compl r Hr Hmono Hconstr)) #n //
qed.
theorem pseudo_speedup:
- ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r →
+ ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r → constructible r →
∃f.∀sf. CF sf f → ∃g,sg. f ≈ g ∧ CF sg g ∧ O sf (r ∘ sg).
(* ∃m,a.∀n. a≤n → r(sg a) < m * sf n. *)
-#r #Hr #Hmono
+#r #Hr #Hmono #Hconstr
(* f is (g (λi,x. r(h_of r 〈i,x〉)) 0) *)
%{(g (λi,x. r(h_of r 〈i,x〉)) 0)} #sf * #H * #i *
#Hcodei #HCi
%{(g (λi,x. r(h_of r 〈i,x〉)) (S i))}
(* sg is (λx.h_of r 〈i,x〉) *)
%{(λx. h_of r 〈S i,x〉)}
-lapply (speed_compl_i … Hr Hmono (S i)) #Hg
+lapply (speed_compl_i … Hr Hmono Hconstr (S i)) #Hg
%[%[@condition_1 |@Hg]
|cases Hg #H1 * #j * #Hcodej #HCj
lapply (condition_2 … Hcodei) #Hcond2 (* @not_to_not *)
qed.
theorem pseudo_speedup':
- ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r →
+ ∀r:nat →nat. (∀x. x ≤ r x) → monotonic ? le r → constructible r →
∃f.∀sf. CF sf f → ∃g,sg. f ≈ g ∧ CF sg g ∧
(* ¬ O (r ∘ sg) sf. *)
∃m,a.∀n. a≤n → r(sg a) < m * sf n.
-#r #Hr #Hmono
+#r #Hr #Hmono #Hconstr
(* f is (g (λi,x. r(h_of r 〈i,x〉)) 0) *)
%{(g (λi,x. r(h_of r 〈i,x〉)) 0)} #sf * #H * #i *
#Hcodei #HCi
%{(g (λi,x. r(h_of r 〈i,x〉)) (S i))}
(* sg is (λx.h_of r 〈i,x〉) *)
%{(λx. h_of r 〈S i,x〉)}
-lapply (speed_compl_i … Hr Hmono (S i)) #Hg
+lapply (speed_compl_i … Hr Hmono Hconstr (S i)) #Hg
%[%[@condition_1 |@Hg]
|cases Hg #H1 * #j * #Hcodej #HCj
lapply (condition_2 … Hcodei) #Hcond2 (* @not_to_not *)