]
qed.
+theorem le_div_times_Sm: \forall a,i,m. O < i \to O < m \to
+a / i \le (a * S (m / i))/m.
+intros.
+apply (trans_le ? ((a * S (m / i))/((S (m/i))*i)))
+ [rewrite < (eq_div_div_div_times ? i)
+ [rewrite > lt_O_to_div_times
+ [apply le_n
+ |apply lt_O_S
+ ]
+ |apply lt_O_S
+ |assumption
+ ]
+ |apply le_times_to_le_div
+ [assumption
+ |apply (trans_le ? (m*(a*S (m/i))/(S (m/i)*i)))
+ [apply le_times_div_div_times.
+ rewrite > (times_n_O O).
+ apply lt_times
+ [apply lt_O_S
+ |assumption
+ ]
+ |rewrite > sym_times.
+ apply le_times_to_le_div2
+ [rewrite > (times_n_O O).
+ apply lt_times
+ [apply lt_O_S
+ |assumption
+ ]
+ |apply le_times_r.
+ apply lt_to_le.
+ apply lt_div_S.
+ assumption
+ ]
+ ]
+ ]
+ ]
+qed.
+
include "nat/minimization.ma".
include "nat/relevant_equations.ma".
include "nat/primes.ma".
+include "nat/iteration2.ma".
+include "nat/div_and_mod_diseq.ma".
definition log \def \lambda p,n.
max n (\lambda x.leb (exp p x) n).
]
qed.
+theorem log_exp2: \forall p,n,m.S O < p \to O < n \to
+m*(log p n) \le log p (exp n m).
+intros.
+apply le_S_S_to_le.
+apply (lt_exp_to_lt p)
+ [assumption
+ |rewrite > sym_times.
+ rewrite < exp_exp_times.
+ apply (le_to_lt_to_lt ? (exp n m))
+ [elim m
+ [simplify.apply le_n
+ |simplify.apply le_times
+ [apply le_exp_log.
+ assumption
+ |assumption
+ ]
+ ]
+ |apply lt_exp_log.
+ assumption
+ ]
+ ]
+qed.
+
theorem le_log: \forall p,n,m. S O < p \to O < n \to n \le m \to
log p n \le log p m.
intros.
]
]
qed.
+
+theorem exp_n_O: \forall n. O < n \to exp O n = O.
+intros.apply (lt_O_n_elim ? H).intros.
+simplify.reflexivity.
+qed.
+
+theorem tech1: \forall n,i.O < n \to
+(exp (S n) (S(S i)))/(exp n (S i)) \le ((exp n i) + (exp (S n) (S i)))/(exp n i).
+intros.
+simplify in ⊢ (? (? ? %) ?).
+rewrite < eq_div_div_div_times
+ [apply monotonic_div
+ [apply lt_O_exp.assumption
+ |apply le_S_S_to_le.
+ apply lt_times_to_lt_div
+ [assumption
+ |change in ⊢ (? % ?) with ((exp (S n) (S i)) + n*(exp (S n) (S i))).
+
+
+ |apply (trans_le ? ((n)\sup(i)*(S n)\sup(S i)/(n)\sup(S i)))
+ [apply le_times_div_div_times.
+ apply lt_O_exp.assumption
+ |apply le_times_to_le_div2
+ [apply lt_O_exp.assumption
+ |simplify.
+*)
+(* falso
+theorem tech1: \forall a,b,n,m.O < m \to
+n/m \le b \to (a*n)/m \le a*b.
+intros.
+apply le_times_to_le_div2
+ [assumption
+ |
+*)
+
+theorem tech2: \forall n,m. O < n \to
+(exp (S n) m) / (exp n m) \le (n + m)/n.
+intros.
+elim m
+ [rewrite < plus_n_O.simplify.
+ rewrite > div_n_n.apply le_n
+ |apply le_times_to_le_div
+ [assumption
+ |apply (trans_le ? (n*(S n)\sup(S n1)/(n)\sup(S n1)))
+ [apply le_times_div_div_times.
+ apply lt_O_exp
+ |simplify in ⊢ (? (? ? %) ?).
+ rewrite > sym_times in ⊢ (? (? ? %) ?).
+ rewrite < eq_div_div_div_times
+ [apply le_times_to_le_div2
+ [assumption
+ |
+
+
+theorem le_log_sigma_p:\forall n,m,p. O < m \to S O < p \to
+log p (exp n m) \le sigma_p n (\lambda i.true) (\lambda i. (m / i)).
+intros.
+elim n
+ [rewrite > exp_n_O
+ [simplify.apply le_n
+ |assumption
+ ]
+ |rewrite > true_to_sigma_p_Sn
+ [apply (trans_le ? (m/n1+(log p (exp n1 m))))
+ [
]
qed.
+theorem eq_div_plus: \forall n,m,d. O < d \to
+divides d n \to divides d m \to
+(n + m ) / d = n/d + m/d.
+intros.
+elim H1.
+elim H2.
+rewrite > H3.rewrite > H4.
+rewrite < distr_times_plus.
+rewrite > sym_times.
+rewrite > sym_times in ⊢ (? ? ? (? (? % ?) ?)).
+rewrite > sym_times in ⊢ (? ? ? (? ? (? % ?))).
+rewrite > lt_O_to_div_times
+ [rewrite > lt_O_to_div_times
+ [rewrite > lt_O_to_div_times
+ [reflexivity
+ |assumption
+ ]
+ |assumption
+ ]
+ |assumption
+ ]
+qed.
(* boolean divides *)
definition divides_b : nat \to nat \to bool \def