proceduralHelpers.cmx: proceduralHelpers.cmi
proceduralClassify.cmo: proceduralHelpers.cmi proceduralClassify.cmi
proceduralClassify.cmx: proceduralHelpers.cmx proceduralClassify.cmi
-proceduralPreprocess.cmo: proceduralHelpers.cmi proceduralClassify.cmi \
- proceduralPreprocess.cmi
-proceduralPreprocess.cmx: proceduralHelpers.cmx proceduralClassify.cmx \
- proceduralPreprocess.cmi
+proceduralOptimizer.cmo: proceduralHelpers.cmi proceduralClassify.cmi \
+ proceduralOptimizer.cmi
+proceduralOptimizer.cmx: proceduralHelpers.cmx proceduralClassify.cmx \
+ proceduralOptimizer.cmi
proceduralTypes.cmo: proceduralTypes.cmi
proceduralTypes.cmx: proceduralTypes.cmi
proceduralMode.cmo: proceduralClassify.cmi proceduralMode.cmi
proceduralMode.cmx: proceduralClassify.cmx proceduralMode.cmi
-proceduralConversion.cmo: proceduralTypes.cmi proceduralPreprocess.cmi \
- proceduralMode.cmi proceduralConversion.cmi
-proceduralConversion.cmx: proceduralTypes.cmx proceduralPreprocess.cmx \
- proceduralMode.cmx proceduralConversion.cmi
+proceduralConversion.cmo: proceduralConversion.cmi
+proceduralConversion.cmx: proceduralConversion.cmi
acic2Procedural.cmo: proceduralTypes.cmi proceduralConversion.cmi \
proceduralClassify.cmi acic2Procedural.cmi
acic2Procedural.cmx: proceduralTypes.cmx proceduralConversion.cmx \
proceduralHelpers.cmx: proceduralHelpers.cmi
proceduralClassify.cmo: proceduralHelpers.cmi proceduralClassify.cmi
proceduralClassify.cmx: proceduralHelpers.cmx proceduralClassify.cmi
-proceduralPreprocess.cmo: proceduralHelpers.cmi proceduralClassify.cmi \
- proceduralPreprocess.cmi
-proceduralPreprocess.cmx: proceduralHelpers.cmx proceduralClassify.cmx \
- proceduralPreprocess.cmi
+proceduralOptimizer.cmo: proceduralHelpers.cmi proceduralClassify.cmi \
+ proceduralOptimizer.cmi
+proceduralOptimizer.cmx: proceduralHelpers.cmx proceduralClassify.cmx \
+ proceduralOptimizer.cmi
proceduralTypes.cmo: proceduralTypes.cmi
proceduralTypes.cmx: proceduralTypes.cmi
proceduralMode.cmo: proceduralClassify.cmi proceduralMode.cmi
proceduralMode.cmx: proceduralClassify.cmx proceduralMode.cmi
-proceduralConversion.cmo: proceduralTypes.cmi proceduralPreprocess.cmi \
- proceduralMode.cmi proceduralConversion.cmi
-proceduralConversion.cmx: proceduralTypes.cmx proceduralPreprocess.cmx \
- proceduralMode.cmx proceduralConversion.cmi
+proceduralConversion.cmo: proceduralConversion.cmi
+proceduralConversion.cmx: proceduralConversion.cmi
acic2Procedural.cmo: proceduralTypes.cmi proceduralConversion.cmi \
proceduralClassify.cmi acic2Procedural.cmi
acic2Procedural.cmx: proceduralTypes.cmx proceduralConversion.cmx \
INTERFACE_FILES = \
proceduralHelpers.mli \
proceduralClassify.mli \
- proceduralPreprocess.mli \
+ proceduralOptimizer.mli \
proceduralTypes.mli \
proceduralMode.mli \
proceduralConversion.mli \
module UM = UriManager
module Rd = CicReduction
-module P = ProceduralPreprocess
-module T = ProceduralTypes
-module M = ProceduralMode
-
(* helpers ******************************************************************)
let cic = D.deannotate_term
--- /dev/null
+(* Copyright (C) 2003-2005, HELM Team.
+ *
+ * This file is part of HELM, an Hypertextual, Electronic
+ * Library of Mathematics, developed at the Computer Science
+ * Department, University of Bologna, Italy.
+ *
+ * HELM is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * HELM is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HELM; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ *
+ * For details, see the HELM World-Wide-Web page,
+ * http://cs.unibo.it/helm/.
+ *)
+
+module C = Cic
+module Pp = CicPp
+module I = CicInspect
+module S = CicSubstitution
+module DTI = DoubleTypeInference
+module HEL = HExtlib
+module PEH = ProofEngineHelpers
+
+module H = ProceduralHelpers
+module Cl = ProceduralClassify
+
+(* term preprocessing: optomization 1 ***************************************)
+
+let defined_premise = "DEFINED"
+
+let define v =
+ let name = C.Name defined_premise in
+ C.LetIn (name, v, C.Rel 1)
+
+let clear_absts m =
+ let rec aux k n = function
+ | C.Lambda (s, v, t) when k > 0 ->
+ C.Lambda (s, v, aux (pred k) n t)
+ | C.Lambda (_, _, t) when n > 0 ->
+ aux 0 (pred n) (S.lift (-1) t)
+ | t when n > 0 ->
+ Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t);
+ assert false
+ | t -> t
+ in
+ aux m
+
+let rec add_abst k = function
+ | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t)
+ | t when k > 0 -> assert false
+ | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t)
+
+let rec opt1_letin g es c name v t =
+ let name = H.mk_fresh_name c name in
+ let entry = Some (name, C.Def (v, None)) in
+ let g t =
+ if DTI.does_not_occur 1 t then begin
+ let x = S.lift (-1) t in
+ HLog.warn "Optimizer: remove 1"; opt1_proof g true c x
+ end else
+ let g = function
+ | C.LetIn (nname, vv, tt) when H.is_proof c v ->
+ let x = C.LetIn (nname, vv, C.LetIn (name, tt, S.lift_from 2 1 t)) in
+ HLog.warn "Optimizer: swap 1"; opt1_proof g true c x
+ | v ->
+ g (C.LetIn (name, v, t))
+ in
+ if es then opt1_term g es c v else g v
+ in
+ if es then opt1_proof g es (entry :: c) t else g t
+
+and opt1_lambda g es c name w t =
+ let name = H.mk_fresh_name c name in
+ let entry = Some (name, C.Decl w) in
+ let g t =
+ let name = if DTI.does_not_occur 1 t then C.Anonymous else name in
+ g (C.Lambda (name, w, t))
+ in
+ if es then opt1_proof g es (entry :: c) t else g t
+
+and opt1_appl g es c t vs =
+ let g vs =
+ let g = function
+ | C.LetIn (mame, vv, tt) ->
+ let vs = List.map (S.lift 1) vs in
+ let x = C.LetIn (mame, vv, C.Appl (tt :: vs)) in
+ HLog.warn "Optimizer: swap 2"; opt1_proof g true c x
+ | C.Lambda (name, ww, tt) ->
+ let v, vs = List.hd vs, List.tl vs in
+ let x = C.Appl (C.LetIn (name, v, tt) :: vs) in
+ HLog.warn "Optimizer: remove 2"; opt1_proof g true c x
+ | C.Appl vvs ->
+ let x = C.Appl (vvs @ vs) in
+ HLog.warn "Optimizer: nested application"; opt1_proof g true c x
+ | t ->
+ let rec aux d rvs = function
+ | [], _ ->
+ let x = C.Appl (t :: List.rev rvs) in
+ if d then opt1_proof g true c x else g x
+ | v :: vs, (cc, bb) :: cs ->
+ if H.is_not_atomic v && I.S.mem 0 cc && bb then begin
+ HLog.warn "Optimizer: anticipate 1";
+ aux true (define v :: rvs) (vs, cs)
+ end else
+ aux d (v :: rvs) (vs, cs)
+ | _, [] -> assert false
+ in
+ let h () =
+ let classes, conclusion = Cl.classify c (H.get_type c t) in
+ let csno, vsno = List.length classes, List.length vs in
+ if csno < vsno then
+ let vvs, vs = HEL.split_nth csno vs in
+ let x = C.Appl (define (C.Appl (t :: vvs)) :: vs) in
+ HLog.warn "Optimizer: anticipate 2"; opt1_proof g true c x
+ else match conclusion, List.rev vs with
+ | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv ->
+ let x = C.Appl (t :: List.rev rvs @ [define rv]) in
+ HLog.warn "Optimizer: anticipate 3"; opt1_proof g true c x
+ | Some _, _ ->
+ g (C.Appl (t :: vs))
+ | None, _ ->
+ aux false [] (vs, classes)
+ in
+ let rec aux h prev = function
+ | C.LetIn (name, vv, tt) :: vs ->
+ let t = S.lift 1 t in
+ let prev = List.map (S.lift 1) prev in
+ let vs = List.map (S.lift 1) vs in
+ let y = C.Appl (t :: List.rev prev @ tt :: vs) in
+ let x = C.LetIn (name, vv, y) in
+ HLog.warn "Optimizer: swap 3"; opt1_proof g true c x
+ | v :: vs -> aux h (v :: prev) vs
+ | [] -> h ()
+ in
+ aux h [] vs
+ in
+ if es then opt1_proof g es c t else g t
+ in
+ if es then H.list_map_cps g (fun h -> opt1_term h es c) vs else g vs
+
+and opt1_mutcase g es c uri tyno outty arg cases =
+ let eliminator = H.get_default_eliminator c uri tyno outty in
+ let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in
+ let ps, sort_disp = H.get_ind_parameters c arg in
+ let lps, rps = HEL.split_nth lpsno ps in
+ let rpsno = List.length rps in
+ let predicate = clear_absts rpsno (1 - sort_disp) outty in
+ let is_recursive t =
+ I.S.mem tyno (I.get_mutinds_of_uri uri t)
+ in
+ let map2 case (_, cty) =
+ let map (h, case, k) (_, premise) =
+ if h > 0 then pred h, case, k else
+ if is_recursive premise then
+ 0, add_abst k case, k + 2
+ else
+ 0, case, succ k
+ in
+ let premises, _ = PEH.split_with_whd (c, cty) in
+ let _, lifted_case, _ =
+ List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises))
+ in
+ lifted_case
+ in
+ let lifted_cases = List.map2 map2 cases constructors in
+ let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
+ let x = H.refine c (C.Appl args) in
+ HLog.warn "Optimizer: remove 3"; opt1_proof g es c x
+
+and opt1_cast g es c t w =
+ let g t = HLog.warn "Optimizer: remove 4"; g t in
+ if es then opt1_proof g es c t else g t
+
+and opt1_other g es c t = g t
+
+and opt1_proof g es c = function
+ | C.LetIn (name, v, t) -> opt1_letin g es c name v t
+ | C.Lambda (name, w, t) -> opt1_lambda g es c name w t
+ | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs)
+ | C.Appl [t] -> opt1_proof g es c t
+ | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws
+ | C.Cast (t, w) -> opt1_cast g es c t w
+ | t -> opt1_other g es c t
+
+and opt1_term g es c t =
+ if H.is_proof c t then opt1_proof g es c t else g t
+
+(* term preprocessing: optomization 2 ***************************************)
+
+let expanded_premise = "EXPANDED"
+
+let eta_expand g tys t =
+ assert (tys <> []);
+ let name i = Printf.sprintf "%s%u" expanded_premise i in
+ let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in
+ let arg i = C.Rel (succ i) in
+ let rec aux i f a = function
+ | [] -> f, a
+ | (_, ty) :: tl -> aux (succ i) (H.compose f (lambda i ty)) (arg i :: a) tl
+ in
+ let n = List.length tys in
+ let absts, args = aux 0 H.identity [] tys in
+ let t = match S.lift n t with
+ | C.Appl ts -> C.Appl (ts @ args)
+ | t -> C.Appl (t :: args)
+ in
+ g (absts t)
+
+let rec opt2_letin g c name v t =
+ let entry = Some (name, C.Def (v, None)) in
+ let g t =
+ let g v = g (C.LetIn (name, v, t)) in
+ opt2_term g c v
+ in
+ opt2_proof g (entry :: c) t
+
+and opt2_lambda g c name w t =
+ let entry = Some (name, C.Decl w) in
+ let g t = g (C.Lambda (name, w, t)) in
+ opt2_proof g (entry :: c) t
+
+and opt2_appl g c t vs =
+ let g vs =
+ let x = C.Appl (t :: vs) in
+ let vsno = List.length vs in
+ let _, csno = PEH.split_with_whd (c, H.get_type c t) in
+ if vsno < csno then
+ let tys, _ = PEH.split_with_whd (c, H.get_type c x) in
+ let tys = List.rev (List.tl tys) in
+ let tys, _ = HEL.split_nth (csno - vsno) tys in
+ HLog.warn "Optimizer: eta 1"; eta_expand g tys x
+ else g x
+ in
+ H.list_map_cps g (fun h -> opt2_term h c) vs
+
+and opt2_other g c t =
+ let tys, csno = PEH.split_with_whd (c, H.get_type c t) in
+ if csno > 0 then begin
+ let tys = List.rev (List.tl tys) in
+ HLog.warn "Optimizer: eta 2"; eta_expand g tys t
+ end else g t
+
+and opt2_proof g c = function
+ | C.LetIn (name, v, t) -> opt2_letin g c name v t
+ | C.Lambda (name, w, t) -> opt2_lambda g c name w t
+ | C.Appl (t :: vs) -> opt2_appl g c t vs
+ | t -> opt2_other g c t
+
+and opt2_term g c t =
+ if H.is_proof c t then opt2_proof g c t else g t
+
+(* object preprocessing *****************************************************)
+
+let optimize_obj = function
+ | C.Constant (name, Some bo, ty, pars, attrs) ->
+ let g bo =
+ Printf.eprintf "Optimized: %s\n" (Pp.ppterm bo);
+ let _ = H.get_type [] (C.Cast (bo, ty)) in
+ C.Constant (name, Some bo, ty, pars, attrs)
+ in
+ Printf.eprintf "BEGIN: %s\n" name;
+ begin try opt1_term (opt2_term g []) true [] bo
+ with e -> failwith ("PPP: " ^ Printexc.to_string e) end
+ | obj -> obj
--- /dev/null
+(* Copyright (C) 2003-2005, HELM Team.
+ *
+ * This file is part of HELM, an Hypertextual, Electronic
+ * Library of Mathematics, developed at the Computer Science
+ * Department, University of Bologna, Italy.
+ *
+ * HELM is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * HELM is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with HELM; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+ * MA 02111-1307, USA.
+ *
+ * For details, see the HELM World-Wide-Web page,
+ * http://cs.unibo.it/helm/.
+ *)
+
+val optimize_obj: Cic.obj -> Cic.obj
+++ /dev/null
-(* Copyright (C) 2003-2005, HELM Team.
- *
- * This file is part of HELM, an Hypertextual, Electronic
- * Library of Mathematics, developed at the Computer Science
- * Department, University of Bologna, Italy.
- *
- * HELM is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * HELM is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with HELM; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
- * MA 02111-1307, USA.
- *
- * For details, see the HELM World-Wide-Web page,
- * http://cs.unibo.it/helm/.
- *)
-
-module C = Cic
-module Pp = CicPp
-module I = CicInspect
-module S = CicSubstitution
-module DTI = DoubleTypeInference
-module HEL = HExtlib
-module PEH = ProofEngineHelpers
-
-module H = ProceduralHelpers
-module Cl = ProceduralClassify
-
-(* term preprocessing: optomization 1 ***************************************)
-
-let defined_premise = "DEFINED"
-
-let define v =
- let name = C.Name defined_premise in
- C.LetIn (name, v, C.Rel 1)
-
-let clear_absts m =
- let rec aux k n = function
- | C.Lambda (s, v, t) when k > 0 ->
- C.Lambda (s, v, aux (pred k) n t)
- | C.Lambda (_, _, t) when n > 0 ->
- aux 0 (pred n) (S.lift (-1) t)
- | t when n > 0 ->
- Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t);
- assert false
- | t -> t
- in
- aux m
-
-let rec add_abst k = function
- | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t)
- | t when k > 0 -> assert false
- | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t)
-
-let rec opt1_letin g es c name v t =
- let name = H.mk_fresh_name c name in
- let entry = Some (name, C.Def (v, None)) in
- let g t =
- if DTI.does_not_occur 1 t then begin
- let x = S.lift (-1) t in
- HLog.warn "Optimizer: remove 1"; opt1_proof g true c x
- end else
- let g = function
- | C.LetIn (nname, vv, tt) when H.is_proof c v ->
- let x = C.LetIn (nname, vv, C.LetIn (name, tt, S.lift_from 2 1 t)) in
- HLog.warn "Optimizer: swap 1"; opt1_proof g true c x
- | v ->
- g (C.LetIn (name, v, t))
- in
- if es then opt1_term g es c v else g v
- in
- if es then opt1_proof g es (entry :: c) t else g t
-
-and opt1_lambda g es c name w t =
- let name = H.mk_fresh_name c name in
- let entry = Some (name, C.Decl w) in
- let g t =
- let name = if DTI.does_not_occur 1 t then C.Anonymous else name in
- g (C.Lambda (name, w, t))
- in
- if es then opt1_proof g es (entry :: c) t else g t
-
-and opt1_appl g es c t vs =
- let g vs =
- let g = function
- | C.LetIn (mame, vv, tt) ->
- let vs = List.map (S.lift 1) vs in
- let x = C.LetIn (mame, vv, C.Appl (tt :: vs)) in
- HLog.warn "Optimizer: swap 2"; opt1_proof g true c x
- | C.Lambda (name, ww, tt) ->
- let v, vs = List.hd vs, List.tl vs in
- let x = C.Appl (C.LetIn (name, v, tt) :: vs) in
- HLog.warn "Optimizer: remove 2"; opt1_proof g true c x
- | C.Appl vvs ->
- let x = C.Appl (vvs @ vs) in
- HLog.warn "Optimizer: nested application"; opt1_proof g true c x
- | t ->
- let rec aux d rvs = function
- | [], _ ->
- let x = C.Appl (t :: List.rev rvs) in
- if d then opt1_proof g true c x else g x
- | v :: vs, (cc, bb) :: cs ->
- if H.is_not_atomic v && I.S.mem 0 cc && bb then begin
- HLog.warn "Optimizer: anticipate 1";
- aux true (define v :: rvs) (vs, cs)
- end else
- aux d (v :: rvs) (vs, cs)
- | _, [] -> assert false
- in
- let h () =
- let classes, conclusion = Cl.classify c (H.get_type c t) in
- let csno, vsno = List.length classes, List.length vs in
- if csno < vsno then
- let vvs, vs = HEL.split_nth csno vs in
- let x = C.Appl (define (C.Appl (t :: vvs)) :: vs) in
- HLog.warn "Optimizer: anticipate 2"; opt1_proof g true c x
- else match conclusion, List.rev vs with
- | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv ->
- let x = C.Appl (t :: List.rev rvs @ [define rv]) in
- HLog.warn "Optimizer: anticipate 3"; opt1_proof g true c x
- | Some _, _ ->
- g (C.Appl (t :: vs))
- | None, _ ->
- aux false [] (vs, classes)
- in
- let rec aux h prev = function
- | C.LetIn (name, vv, tt) :: vs ->
- let t = S.lift 1 t in
- let prev = List.map (S.lift 1) prev in
- let vs = List.map (S.lift 1) vs in
- let y = C.Appl (t :: List.rev prev @ tt :: vs) in
- let x = C.LetIn (name, vv, y) in
- HLog.warn "Optimizer: swap 3"; opt1_proof g true c x
- | v :: vs -> aux h (v :: prev) vs
- | [] -> h ()
- in
- aux h [] vs
- in
- if es then opt1_proof g es c t else g t
- in
- if es then H.list_map_cps g (fun h -> opt1_term h es c) vs else g vs
-
-and opt1_mutcase g es c uri tyno outty arg cases =
- let eliminator = H.get_default_eliminator c uri tyno outty in
- let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in
- let ps, sort_disp = H.get_ind_parameters c arg in
- let lps, rps = HEL.split_nth lpsno ps in
- let rpsno = List.length rps in
- let predicate = clear_absts rpsno (1 - sort_disp) outty in
- let is_recursive t =
- I.S.mem tyno (I.get_mutinds_of_uri uri t)
- in
- let map2 case (_, cty) =
- let map (h, case, k) (_, premise) =
- if h > 0 then pred h, case, k else
- if is_recursive premise then
- 0, add_abst k case, k + 2
- else
- 0, case, succ k
- in
- let premises, _ = PEH.split_with_whd (c, cty) in
- let _, lifted_case, _ =
- List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises))
- in
- lifted_case
- in
- let lifted_cases = List.map2 map2 cases constructors in
- let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
- let x = H.refine c (C.Appl args) in
- HLog.warn "Optimizer: remove 3"; opt1_proof g es c x
-
-and opt1_cast g es c t w =
- let g t = HLog.warn "Optimizer: remove 4"; g t in
- if es then opt1_proof g es c t else g t
-
-and opt1_other g es c t = g t
-
-and opt1_proof g es c = function
- | C.LetIn (name, v, t) -> opt1_letin g es c name v t
- | C.Lambda (name, w, t) -> opt1_lambda g es c name w t
- | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs)
- | C.Appl [t] -> opt1_proof g es c t
- | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws
- | C.Cast (t, w) -> opt1_cast g es c t w
- | t -> opt1_other g es c t
-
-and opt1_term g es c t =
- if H.is_proof c t then opt1_proof g es c t else g t
-
-(* term preprocessing: optomization 2 ***************************************)
-
-let expanded_premise = "EXPANDED"
-
-let eta_expand g tys t =
- assert (tys <> []);
- let name i = Printf.sprintf "%s%u" expanded_premise i in
- let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in
- let arg i = C.Rel (succ i) in
- let rec aux i f a = function
- | [] -> f, a
- | (_, ty) :: tl -> aux (succ i) (H.compose f (lambda i ty)) (arg i :: a) tl
- in
- let n = List.length tys in
- let absts, args = aux 0 H.identity [] tys in
- let t = match S.lift n t with
- | C.Appl ts -> C.Appl (ts @ args)
- | t -> C.Appl (t :: args)
- in
- g (absts t)
-
-let rec opt2_letin g c name v t =
- let entry = Some (name, C.Def (v, None)) in
- let g t =
- let g v = g (C.LetIn (name, v, t)) in
- opt2_term g c v
- in
- opt2_proof g (entry :: c) t
-
-and opt2_lambda g c name w t =
- let entry = Some (name, C.Decl w) in
- let g t = g (C.Lambda (name, w, t)) in
- opt2_proof g (entry :: c) t
-
-and opt2_appl g c t vs =
- let g vs =
- let x = C.Appl (t :: vs) in
- let vsno = List.length vs in
- let _, csno = PEH.split_with_whd (c, H.get_type c t) in
- if vsno < csno then
- let tys, _ = PEH.split_with_whd (c, H.get_type c x) in
- let tys = List.rev (List.tl tys) in
- let tys, _ = HEL.split_nth (csno - vsno) tys in
- HLog.warn "Optimizer: eta 1"; eta_expand g tys x
- else g x
- in
- H.list_map_cps g (fun h -> opt2_term h c) vs
-
-and opt2_other g c t =
- let tys, csno = PEH.split_with_whd (c, H.get_type c t) in
- if csno > 0 then begin
- let tys = List.rev (List.tl tys) in
- HLog.warn "Optimizer: eta 2"; eta_expand g tys t
- end else g t
-
-and opt2_proof g c = function
- | C.LetIn (name, v, t) -> opt2_letin g c name v t
- | C.Lambda (name, w, t) -> opt2_lambda g c name w t
- | C.Appl (t :: vs) -> opt2_appl g c t vs
- | t -> opt2_other g c t
-
-and opt2_term g c t =
- if H.is_proof c t then opt2_proof g c t else g t
-
-(* object preprocessing *****************************************************)
-
-let pp_obj = function
- | C.Constant (name, Some bo, ty, pars, attrs) ->
- let g bo =
- Printf.eprintf "Optimized: %s\n" (Pp.ppterm bo);
- let _ = H.get_type [] (C.Cast (bo, ty)) in
- C.Constant (name, Some bo, ty, pars, attrs)
- in
- Printf.eprintf "BEGIN: %s\n" name;
- begin try opt1_term (opt2_term g []) true [] bo
- with e -> failwith ("PPP: " ^ Printexc.to_string e) end
- | obj -> obj
+++ /dev/null
-(* Copyright (C) 2003-2005, HELM Team.
- *
- * This file is part of HELM, an Hypertextual, Electronic
- * Library of Mathematics, developed at the Computer Science
- * Department, University of Bologna, Italy.
- *
- * HELM is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * HELM is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with HELM; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston,
- * MA 02111-1307, USA.
- *
- * For details, see the HELM World-Wide-Web page,
- * http://cs.unibo.it/helm/.
- *)
-
-val pp_obj: Cic.obj -> Cic.obj
(CicNotationPres.mpres_of_box bobj)
)
| G.Procedural depth ->
- let obj = ProceduralPreprocess.pp_obj obj in
+ let obj = ProceduralOptimizer.optimize_obj obj in
let aobj, ids_to_inner_sorts, ids_to_inner_types = get_aobj obj in
let term_pp = term2pres (n - 8) ids_to_inner_sorts in
let lazy_term_pp = term_pp in