--- /dev/null
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta/drop1/props".
+
+include "drop1/defs.ma".
+
+include "drop/props.ma".
+
+theorem drop1_skip_bind:
+ \forall (b: B).(\forall (e: C).(\forall (hds: PList).(\forall (c: 
+C).(\forall (u: T).((drop1 hds c e) \to (drop1 (Ss hds) (CHead c (Bind b) 
+(lift1 hds u)) (CHead e (Bind b) u)))))))
+\def
+ \lambda (b: B).(\lambda (e: C).(\lambda (hds: PList).(PList_ind (\lambda (p: 
+PList).(\forall (c: C).(\forall (u: T).((drop1 p c e) \to (drop1 (Ss p) 
+(CHead c (Bind b) (lift1 p u)) (CHead e (Bind b) u)))))) (\lambda (c: 
+C).(\lambda (u: T).(\lambda (H: (drop1 PNil c e)).(let H0 \def (match H in 
+drop1 return (\lambda (p: PList).(\lambda (c0: C).(\lambda (c1: C).(\lambda 
+(_: (drop1 p c0 c1)).((eq PList p PNil) \to ((eq C c0 c) \to ((eq C c1 e) \to 
+(drop1 PNil (CHead c (Bind b) u) (CHead e (Bind b) u))))))))) with 
+[(drop1_nil c0) \Rightarrow (\lambda (_: (eq PList PNil PNil)).(\lambda (H1: 
+(eq C c0 c)).(\lambda (H2: (eq C c0 e)).(eq_ind C c (\lambda (c1: C).((eq C 
+c1 e) \to (drop1 PNil (CHead c (Bind b) u) (CHead e (Bind b) u)))) (\lambda 
+(H3: (eq C c e)).(eq_ind C e (\lambda (c: C).(drop1 PNil (CHead c (Bind b) u) 
+(CHead e (Bind b) u))) (drop1_nil (CHead e (Bind b) u)) c (sym_eq C c e H3))) 
+c0 (sym_eq C c0 c H1) H2)))) | (drop1_cons c1 c2 h d H0 c3 hds H1) 
+\Rightarrow (\lambda (H2: (eq PList (PCons h d hds) PNil)).(\lambda (H3: (eq 
+C c1 c)).(\lambda (H4: (eq C c3 e)).((let H5 \def (eq_ind PList (PCons h d 
+hds) (\lambda (e0: PList).(match e0 in PList return (\lambda (_: PList).Prop) 
+with [PNil \Rightarrow False | (PCons _ _ _) \Rightarrow True])) I PNil H2) 
+in (False_ind ((eq C c1 c) \to ((eq C c3 e) \to ((drop h d c1 c2) \to ((drop1 
+hds c2 c3) \to (drop1 PNil (CHead c (Bind b) u) (CHead e (Bind b) u)))))) 
+H5)) H3 H4 H0 H1))))]) in (H0 (refl_equal PList PNil) (refl_equal C c) 
+(refl_equal C e)))))) (\lambda (n: nat).(\lambda (n0: nat).(\lambda (p: 
+PList).(\lambda (H: ((\forall (c: C).(\forall (u: T).((drop1 p c e) \to 
+(drop1 (Ss p) (CHead c (Bind b) (lift1 p u)) (CHead e (Bind b) 
+u))))))).(\lambda (c: C).(\lambda (u: T).(\lambda (H0: (drop1 (PCons n n0 p) 
+c e)).(let H1 \def (match H0 in drop1 return (\lambda (p0: PList).(\lambda 
+(c0: C).(\lambda (c1: C).(\lambda (_: (drop1 p0 c0 c1)).((eq PList p0 (PCons 
+n n0 p)) \to ((eq C c0 c) \to ((eq C c1 e) \to (drop1 (PCons n (S n0) (Ss p)) 
+(CHead c (Bind b) (lift n n0 (lift1 p u))) (CHead e (Bind b) u))))))))) with 
+[(drop1_nil c0) \Rightarrow (\lambda (H1: (eq PList PNil (PCons n n0 
+p))).(\lambda (H2: (eq C c0 c)).(\lambda (H3: (eq C c0 e)).((let H4 \def 
+(eq_ind PList PNil (\lambda (e0: PList).(match e0 in PList return (\lambda 
+(_: PList).Prop) with [PNil \Rightarrow True | (PCons _ _ _) \Rightarrow 
+False])) I (PCons n n0 p) H1) in (False_ind ((eq C c0 c) \to ((eq C c0 e) \to 
+(drop1 (PCons n (S n0) (Ss p)) (CHead c (Bind b) (lift n n0 (lift1 p u))) 
+(CHead e (Bind b) u)))) H4)) H2 H3)))) | (drop1_cons c1 c2 h d H1 c3 hds H2) 
+\Rightarrow (\lambda (H3: (eq PList (PCons h d hds) (PCons n n0 p))).(\lambda 
+(H4: (eq C c1 c)).(\lambda (H5: (eq C c3 e)).((let H6 \def (f_equal PList 
+PList (\lambda (e0: PList).(match e0 in PList return (\lambda (_: 
+PList).PList) with [PNil \Rightarrow hds | (PCons _ _ p) \Rightarrow p])) 
+(PCons h d hds) (PCons n n0 p) H3) in ((let H7 \def (f_equal PList nat 
+(\lambda (e0: PList).(match e0 in PList return (\lambda (_: PList).nat) with 
+[PNil \Rightarrow d | (PCons _ n _) \Rightarrow n])) (PCons h d hds) (PCons n 
+n0 p) H3) in ((let H8 \def (f_equal PList nat (\lambda (e0: PList).(match e0 
+in PList return (\lambda (_: PList).nat) with [PNil \Rightarrow h | (PCons n 
+_ _) \Rightarrow n])) (PCons h d hds) (PCons n n0 p) H3) in (eq_ind nat n 
+(\lambda (n1: nat).((eq nat d n0) \to ((eq PList hds p) \to ((eq C c1 c) \to 
+((eq C c3 e) \to ((drop n1 d c1 c2) \to ((drop1 hds c2 c3) \to (drop1 (PCons 
+n (S n0) (Ss p)) (CHead c (Bind b) (lift n n0 (lift1 p u))) (CHead e (Bind b) 
+u))))))))) (\lambda (H9: (eq nat d n0)).(eq_ind nat n0 (\lambda (n1: 
+nat).((eq PList hds p) \to ((eq C c1 c) \to ((eq C c3 e) \to ((drop n n1 c1 
+c2) \to ((drop1 hds c2 c3) \to (drop1 (PCons n (S n0) (Ss p)) (CHead c (Bind 
+b) (lift n n0 (lift1 p u))) (CHead e (Bind b) u)))))))) (\lambda (H10: (eq 
+PList hds p)).(eq_ind PList p (\lambda (p0: PList).((eq C c1 c) \to ((eq C c3 
+e) \to ((drop n n0 c1 c2) \to ((drop1 p0 c2 c3) \to (drop1 (PCons n (S n0) 
+(Ss p)) (CHead c (Bind b) (lift n n0 (lift1 p u))) (CHead e (Bind b) u))))))) 
+(\lambda (H11: (eq C c1 c)).(eq_ind C c (\lambda (c0: C).((eq C c3 e) \to 
+((drop n n0 c0 c2) \to ((drop1 p c2 c3) \to (drop1 (PCons n (S n0) (Ss p)) 
+(CHead c (Bind b) (lift n n0 (lift1 p u))) (CHead e (Bind b) u)))))) (\lambda 
+(H12: (eq C c3 e)).(eq_ind C e (\lambda (c0: C).((drop n n0 c c2) \to ((drop1 
+p c2 c0) \to (drop1 (PCons n (S n0) (Ss p)) (CHead c (Bind b) (lift n n0 
+(lift1 p u))) (CHead e (Bind b) u))))) (\lambda (H13: (drop n n0 c 
+c2)).(\lambda (H14: (drop1 p c2 e)).(drop1_cons (CHead c (Bind b) (lift n n0 
+(lift1 p u))) (CHead c2 (Bind b) (lift1 p u)) n (S n0) (drop_skip_bind n n0 c 
+c2 H13 b (lift1 p u)) (CHead e (Bind b) u) (Ss p) (H c2 u H14)))) c3 (sym_eq 
+C c3 e H12))) c1 (sym_eq C c1 c H11))) hds (sym_eq PList hds p H10))) d 
+(sym_eq nat d n0 H9))) h (sym_eq nat h n H8))) H7)) H6)) H4 H5 H1 H2))))]) in 
+(H1 (refl_equal PList (PCons n n0 p)) (refl_equal C c) (refl_equal C 
+e)))))))))) hds))).
+
+theorem drop1_cons_tail:
+ \forall (c2: C).(\forall (c3: C).(\forall (h: nat).(\forall (d: nat).((drop 
+h d c2 c3) \to (\forall (hds: PList).(\forall (c1: C).((drop1 hds c1 c2) \to 
+(drop1 (PConsTail hds h d) c1 c3))))))))
+\def
+ \lambda (c2: C).(\lambda (c3: C).(\lambda (h: nat).(\lambda (d: 
+nat).(\lambda (H: (drop h d c2 c3)).(\lambda (hds: PList).(PList_ind (\lambda 
+(p: PList).(\forall (c1: C).((drop1 p c1 c2) \to (drop1 (PConsTail p h d) c1 
+c3)))) (\lambda (c1: C).(\lambda (H0: (drop1 PNil c1 c2)).(let H1 \def (match 
+H0 in drop1 return (\lambda (p: PList).(\lambda (c: C).(\lambda (c0: 
+C).(\lambda (_: (drop1 p c c0)).((eq PList p PNil) \to ((eq C c c1) \to ((eq 
+C c0 c2) \to (drop1 (PCons h d PNil) c1 c3)))))))) with [(drop1_nil c) 
+\Rightarrow (\lambda (_: (eq PList PNil PNil)).(\lambda (H2: (eq C c 
+c1)).(\lambda (H3: (eq C c c2)).(eq_ind C c1 (\lambda (c0: C).((eq C c0 c2) 
+\to (drop1 (PCons h d PNil) c1 c3))) (\lambda (H4: (eq C c1 c2)).(eq_ind C c2 
+(\lambda (c0: C).(drop1 (PCons h d PNil) c0 c3)) (drop1_cons c2 c3 h d H c3 
+PNil (drop1_nil c3)) c1 (sym_eq C c1 c2 H4))) c (sym_eq C c c1 H2) H3)))) | 
+(drop1_cons c0 c4 h0 d0 H1 c5 hds H2) \Rightarrow (\lambda (H3: (eq PList 
+(PCons h0 d0 hds) PNil)).(\lambda (H4: (eq C c0 c1)).(\lambda (H5: (eq C c5 
+c2)).((let H6 \def (eq_ind PList (PCons h0 d0 hds) (\lambda (e: PList).(match 
+e in PList return (\lambda (_: PList).Prop) with [PNil \Rightarrow False | 
+(PCons _ _ _) \Rightarrow True])) I PNil H3) in (False_ind ((eq C c0 c1) \to 
+((eq C c5 c2) \to ((drop h0 d0 c0 c4) \to ((drop1 hds c4 c5) \to (drop1 
+(PCons h d PNil) c1 c3))))) H6)) H4 H5 H1 H2))))]) in (H1 (refl_equal PList 
+PNil) (refl_equal C c1) (refl_equal C c2))))) (\lambda (n: nat).(\lambda (n0: 
+nat).(\lambda (p: PList).(\lambda (H0: ((\forall (c1: C).((drop1 p c1 c2) \to 
+(drop1 (PConsTail p h d) c1 c3))))).(\lambda (c1: C).(\lambda (H1: (drop1 
+(PCons n n0 p) c1 c2)).(let H2 \def (match H1 in drop1 return (\lambda (p0: 
+PList).(\lambda (c: C).(\lambda (c0: C).(\lambda (_: (drop1 p0 c c0)).((eq 
+PList p0 (PCons n n0 p)) \to ((eq C c c1) \to ((eq C c0 c2) \to (drop1 (PCons 
+n n0 (PConsTail p h d)) c1 c3)))))))) with [(drop1_nil c) \Rightarrow 
+(\lambda (H2: (eq PList PNil (PCons n n0 p))).(\lambda (H3: (eq C c 
+c1)).(\lambda (H4: (eq C c c2)).((let H5 \def (eq_ind PList PNil (\lambda (e: 
+PList).(match e in PList return (\lambda (_: PList).Prop) with [PNil 
+\Rightarrow True | (PCons _ _ _) \Rightarrow False])) I (PCons n n0 p) H2) in 
+(False_ind ((eq C c c1) \to ((eq C c c2) \to (drop1 (PCons n n0 (PConsTail p 
+h d)) c1 c3))) H5)) H3 H4)))) | (drop1_cons c0 c4 h0 d0 H2 c5 hds H3) 
+\Rightarrow (\lambda (H4: (eq PList (PCons h0 d0 hds) (PCons n n0 
+p))).(\lambda (H5: (eq C c0 c1)).(\lambda (H6: (eq C c5 c2)).((let H7 \def 
+(f_equal PList PList (\lambda (e: PList).(match e in PList return (\lambda 
+(_: PList).PList) with [PNil \Rightarrow hds | (PCons _ _ p) \Rightarrow p])) 
+(PCons h0 d0 hds) (PCons n n0 p) H4) in ((let H8 \def (f_equal PList nat 
+(\lambda (e: PList).(match e in PList return (\lambda (_: PList).nat) with 
+[PNil \Rightarrow d0 | (PCons _ n _) \Rightarrow n])) (PCons h0 d0 hds) 
+(PCons n n0 p) H4) in ((let H9 \def (f_equal PList nat (\lambda (e: 
+PList).(match e in PList return (\lambda (_: PList).nat) with [PNil 
+\Rightarrow h0 | (PCons n _ _) \Rightarrow n])) (PCons h0 d0 hds) (PCons n n0 
+p) H4) in (eq_ind nat n (\lambda (n1: nat).((eq nat d0 n0) \to ((eq PList hds 
+p) \to ((eq C c0 c1) \to ((eq C c5 c2) \to ((drop n1 d0 c0 c4) \to ((drop1 
+hds c4 c5) \to (drop1 (PCons n n0 (PConsTail p h d)) c1 c3)))))))) (\lambda 
+(H10: (eq nat d0 n0)).(eq_ind nat n0 (\lambda (n1: nat).((eq PList hds p) \to 
+((eq C c0 c1) \to ((eq C c5 c2) \to ((drop n n1 c0 c4) \to ((drop1 hds c4 c5) 
+\to (drop1 (PCons n n0 (PConsTail p h d)) c1 c3))))))) (\lambda (H11: (eq 
+PList hds p)).(eq_ind PList p (\lambda (p0: PList).((eq C c0 c1) \to ((eq C 
+c5 c2) \to ((drop n n0 c0 c4) \to ((drop1 p0 c4 c5) \to (drop1 (PCons n n0 
+(PConsTail p h d)) c1 c3)))))) (\lambda (H12: (eq C c0 c1)).(eq_ind C c1 
+(\lambda (c: C).((eq C c5 c2) \to ((drop n n0 c c4) \to ((drop1 p c4 c5) \to 
+(drop1 (PCons n n0 (PConsTail p h d)) c1 c3))))) (\lambda (H13: (eq C c5 
+c2)).(eq_ind C c2 (\lambda (c: C).((drop n n0 c1 c4) \to ((drop1 p c4 c) \to 
+(drop1 (PCons n n0 (PConsTail p h d)) c1 c3)))) (\lambda (H14: (drop n n0 c1 
+c4)).(\lambda (H15: (drop1 p c4 c2)).(drop1_cons c1 c4 n n0 H14 c3 (PConsTail 
+p h d) (H0 c4 H15)))) c5 (sym_eq C c5 c2 H13))) c0 (sym_eq C c0 c1 H12))) hds 
+(sym_eq PList hds p H11))) d0 (sym_eq nat d0 n0 H10))) h0 (sym_eq nat h0 n 
+H9))) H8)) H7)) H5 H6 H2 H3))))]) in (H2 (refl_equal PList (PCons n n0 p)) 
+(refl_equal C c1) (refl_equal C c2))))))))) hds)))))).
+
 
 
 include "lift1/defs.ma".
 
+include "lift/props.ma".
+
+include "drop1/defs.ma".
+
 theorem lift1_xhg:
  \forall (hds: PList).(\forall (t: T).(eq T (lift1 (Ss hds) (lift (S O) O t)) 
 (lift (S O) O (lift1 hds t))))
 (lifts1 hds t0)))) (lifts1 (Ss hds) (lifts (S O) O t0)) H) (lift1 (Ss hds) 
 (lift (S O) O t)) (lift1_xhg hds t))))) ts)).
 
+theorem lift1_free:
+ \forall (hds: PList).(\forall (i: nat).(\forall (t: T).(eq T (lift1 hds 
+(lift (S i) O t)) (lift (S (trans hds i)) O (ctrans hds i t)))))
+\def
+ \lambda (hds: PList).(PList_ind (\lambda (p: PList).(\forall (i: 
+nat).(\forall (t: T).(eq T (lift1 p (lift (S i) O t)) (lift (S (trans p i)) O 
+(ctrans p i t)))))) (\lambda (i: nat).(\lambda (t: T).(refl_equal T (lift (S 
+i) O t)))) (\lambda (h: nat).(\lambda (d: nat).(\lambda (hds0: 
+PList).(\lambda (H: ((\forall (i: nat).(\forall (t: T).(eq T (lift1 hds0 
+(lift (S i) O t)) (lift (S (trans hds0 i)) O (ctrans hds0 i t))))))).(\lambda 
+(i: nat).(\lambda (t: T).(eq_ind_r T (lift (S (trans hds0 i)) O (ctrans hds0 
+i t)) (\lambda (t0: T).(eq T (lift h d t0) (lift (S (match (blt (trans hds0 
+i) d) with [true \Rightarrow (trans hds0 i) | false \Rightarrow (plus (trans 
+hds0 i) h)])) O (match (blt (trans hds0 i) d) with [true \Rightarrow (lift h 
+(minus d (S (trans hds0 i))) (ctrans hds0 i t)) | false \Rightarrow (ctrans 
+hds0 i t)])))) (xinduction bool (blt (trans hds0 i) d) (\lambda (b: bool).(eq 
+T (lift h d (lift (S (trans hds0 i)) O (ctrans hds0 i t))) (lift (S (match b 
+with [true \Rightarrow (trans hds0 i) | false \Rightarrow (plus (trans hds0 
+i) h)])) O (match b with [true \Rightarrow (lift h (minus d (S (trans hds0 
+i))) (ctrans hds0 i t)) | false \Rightarrow (ctrans hds0 i t)])))) (\lambda 
+(x_x: bool).(bool_ind (\lambda (b: bool).((eq bool (blt (trans hds0 i) d) b) 
+\to (eq T (lift h d (lift (S (trans hds0 i)) O (ctrans hds0 i t))) (lift (S 
+(match b with [true \Rightarrow (trans hds0 i) | false \Rightarrow (plus 
+(trans hds0 i) h)])) O (match b with [true \Rightarrow (lift h (minus d (S 
+(trans hds0 i))) (ctrans hds0 i t)) | false \Rightarrow (ctrans hds0 i 
+t)]))))) (\lambda (H0: (eq bool (blt (trans hds0 i) d) true)).(eq_ind_r nat 
+(plus (S (trans hds0 i)) (minus d (S (trans hds0 i)))) (\lambda (n: nat).(eq 
+T (lift h n (lift (S (trans hds0 i)) O (ctrans hds0 i t))) (lift (S (trans 
+hds0 i)) O (lift h (minus d (S (trans hds0 i))) (ctrans hds0 i t))))) 
+(eq_ind_r T (lift (S (trans hds0 i)) O (lift h (minus d (S (trans hds0 i))) 
+(ctrans hds0 i t))) (\lambda (t0: T).(eq T t0 (lift (S (trans hds0 i)) O 
+(lift h (minus d (S (trans hds0 i))) (ctrans hds0 i t))))) (refl_equal T 
+(lift (S (trans hds0 i)) O (lift h (minus d (S (trans hds0 i))) (ctrans hds0 
+i t)))) (lift h (plus (S (trans hds0 i)) (minus d (S (trans hds0 i)))) (lift 
+(S (trans hds0 i)) O (ctrans hds0 i t))) (lift_d (ctrans hds0 i t) h (S 
+(trans hds0 i)) (minus d (S (trans hds0 i))) O (le_O_n (minus d (S (trans 
+hds0 i)))))) d (le_plus_minus (S (trans hds0 i)) d (bge_le (S (trans hds0 i)) 
+d (le_bge (S (trans hds0 i)) d (lt_le_S (trans hds0 i) d (blt_lt d (trans 
+hds0 i) H0))))))) (\lambda (H0: (eq bool (blt (trans hds0 i) d) 
+false)).(eq_ind_r T (lift (plus h (S (trans hds0 i))) O (ctrans hds0 i t)) 
+(\lambda (t0: T).(eq T t0 (lift (S (plus (trans hds0 i) h)) O (ctrans hds0 i 
+t)))) (eq_ind nat (S (plus h (trans hds0 i))) (\lambda (n: nat).(eq T (lift n 
+O (ctrans hds0 i t)) (lift (S (plus (trans hds0 i) h)) O (ctrans hds0 i t)))) 
+(eq_ind_r nat (plus (trans hds0 i) h) (\lambda (n: nat).(eq T (lift (S n) O 
+(ctrans hds0 i t)) (lift (S (plus (trans hds0 i) h)) O (ctrans hds0 i t)))) 
+(refl_equal T (lift (S (plus (trans hds0 i) h)) O (ctrans hds0 i t))) (plus h 
+(trans hds0 i)) (plus_comm h (trans hds0 i))) (plus h (S (trans hds0 i))) 
+(plus_n_Sm h (trans hds0 i))) (lift h d (lift (S (trans hds0 i)) O (ctrans 
+hds0 i t))) (lift_free (ctrans hds0 i t) (S (trans hds0 i)) h O d (eq_ind nat 
+(S (plus O (trans hds0 i))) (\lambda (n: nat).(le d n)) (eq_ind_r nat (plus 
+(trans hds0 i) O) (\lambda (n: nat).(le d (S n))) (le_S d (plus (trans hds0 
+i) O) (le_plus_trans d (trans hds0 i) O (bge_le d (trans hds0 i) H0))) (plus 
+O (trans hds0 i)) (plus_comm O (trans hds0 i))) (plus O (S (trans hds0 i))) 
+(plus_n_Sm O (trans hds0 i))) (le_O_n d)))) x_x))) (lift1 hds0 (lift (S i) O 
+t)) (H i t)))))))) hds).
+