| constructor 1;
[2: constructor 1; constructor 1;
[ intros (x y); apply (y ∈ f (singleton ? x));
- | intros; unfold FunClass_1_OF_Ocontinuous_relation;
+ | apply hide; intros; unfold FunClass_1_OF_Ocontinuous_relation;
unfold in ⊢ (? ? ? (? ? ? ? ? ? %) ?); apply (.= e1‡††e);
apply rule #; ]
|1: constructor 1; constructor 1;
[ intros (x y); apply (y ∈ star_image ?? (⊩ \sub t_1) (f (image ?? (⊩ \sub s_1) (singleton ? x))));
- | intros; unfold FunClass_1_OF_Ocontinuous_relation;
+ | apply hide; intros; unfold FunClass_1_OF_Ocontinuous_relation;
unfold in ⊢ (? ? ? (? ? ? ? ? ? (? ? ? ? ? ? %)) ?);
apply (.= e1‡(#‡†(#‡†e))); apply rule #; ]
- | whd; simplify; intros; split; intros; simplify; whd in f1 ⊢ %; simplify in f1 ⊢ %;
+ | whd; simplify; intros; simplify;
+ whd in ⊢ (? % %); simplify in ⊢ (? % %);
+ lapply (Oreduced ?? f (image (concr s_1) (form s_1) (⊩ \sub s_1) (singleton ? x)));
+ [ whd in Hletin; simplify in Hletin; cases Hletin; clear Hletin;
+ lapply (s y); clear s;
+whd in Hletin:(? ? ? (? ? (? ? ? % ?)) ?); simplify in Hletin;
+whd in Hletin; simplify in Hletin;
+ lapply (s1 y); clear s1;
+ split; intros; simplify; whd in f1 ⊢ %; simplify in f1 ⊢ %;
cases f1; clear f1; cases x1; clear x1;
[
| exists;