let debug s = prerr_endline s;;
let debug _ = ();;
+ let enable = true;;
let rec list_first f = function
| [] -> None
let first_position pos ctx t f =
let inject_pos pos ctx = function
- | None -> None
- | Some (a,b,c,d,e) -> Some(ctx a,b,c,d,e,pos)
+ | None -> None
+ | Some (a,b,c,d) -> Some(ctx a,b,c,d,pos)
in
let rec aux pos ctx = function
| Terms.Leaf _ as t -> inject_pos pos ctx (f t)
| Terms.Var _ as t -> bag,t,id
| Terms.Node l as t->
let bag,t,id1 = f bag t pos ctx id in
- if id = id1 then
+ if id = id1 then
let bag, l, _, id =
- List.fold_left
- (fun (bag,pre,post,id) t ->
+ List.fold_left
+ (fun (bag,pre,post,id) t ->
let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
- let newpos = (List.length pre)::pos in
- let bag,newt,id = aux bag newpos newctx id t in
- if post = [] then bag, pre@[newt], [], id
+ let newpos = (List.length pre)::pos in
+ let bag,newt,id = aux bag newpos newctx id t in
+ if post = [] then bag, pre@[newt], [], id
else bag, pre @ [newt], List.tl post, id)
- (bag, [], List.tl l, id) l
+ (bag, [], List.tl l, id) l
in
- bag, Terms.Node l, id
- else bag,t,id1
+ bag, Terms.Node l, id
+ else bag,t,id1
in
aux bag pos ctx id t
;;
- let build_clause bag filter rule t subst vl id id2 pos dir =
+ let build_clause bag filter rule t subst id id2 pos dir =
let proof = Terms.Step(rule,id,id2,dir,pos,subst) in
let t = Subst.apply_subst subst t in
if filter t then
else
((*prerr_endline ("Filtering: " ^ Pp.pp_foterm t);*)None)
;;
+ let prof_build_clause = HExtlib.profile ~enable "build_clause";;
+ let build_clause bag filter rule t subst id id2 pos x =
+ prof_build_clause.HExtlib.profile (build_clause bag filter rule t subst id id2 pos) x
+ ;;
(* ============ simplification ================= *)
+ let prof_demod_u = HExtlib.profile ~enable "demod.unify";;
+ let prof_demod_r = HExtlib.profile ~enable "demod.retrieve_generalizations";;
+ let prof_demod_o = HExtlib.profile ~enable "demod.compare_terms";;
let demod table varlist subterm =
- let cands = IDX.DT.retrieve_generalizations table subterm in
+ let cands =
+ prof_demod_r.HExtlib.profile
+ (IDX.DT.retrieve_generalizations table) subterm
+ in
list_first
(fun (dir, (id,lit,vl,_)) ->
match lit with
| Terms.Equation (l,r,_,o) ->
let side, newside = if dir=Terms.Left2Right then l,r else r,l in
try
- let subst, varlist =
- Unif.unification (varlist@vl) varlist subterm side
- in
+ let subst =
+ prof_demod_u.HExtlib.profile
+ (Unif.unification (varlist@vl) varlist subterm) side
+ in
let side = Subst.apply_subst subst side in
let newside = Subst.apply_subst subst newside in
if o = Terms.Incomparable then
- let o = Order.compare_terms newside side in
+ let o =
+ prof_demod_o.HExtlib.profile
+ (Order.compare_terms newside) side in
(* Riazanov, pp. 45 (ii) *)
if o = Terms.Lt then
- Some (newside, subst, varlist, id, dir)
+ Some (newside, subst, id, dir)
else
((*prerr_endline ("Filtering: " ^
Pp.pp_foterm side ^ " =(< || =)" ^
Pp.pp_foterm newside ^ " coming from " ^
Pp.pp_unit_clause uc );*)None)
else
- Some (newside, subst, varlist, id, dir)
+ Some (newside, subst, id, dir)
with FoUnif.UnificationFailure _ -> None)
(IDX.ClauseSet.elements cands)
;;
+ let prof_demod = HExtlib.profile ~enable "demod";;
+ let demod table varlist x =
+ prof_demod.HExtlib.profile (demod table varlist) x
+ ;;
let demodulate_once_old ~jump_to_right bag (id, literal, vl, pr) table =
match literal with
| Terms.Predicate t -> assert false
| Terms.Equation (l,r,ty,_) ->
- let left_position = if jump_to_right then None else
- first_position [2]
- (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) l
- (demod table vl)
- in
+ let left_position = if jump_to_right then None else
+ first_position [2]
+ (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) l
+ (demod table vl)
+ in
match left_position with
- | Some (newt, subst, varlist, id2, dir, pos) ->
- begin
- match build_clause bag (fun _ -> true) Terms.Demodulation
- newt subst varlist id id2 pos dir
- with
- | None -> assert false
- | Some x -> Some (x,false)
- end
- | None ->
- match first_position
- [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) r
- (demod table vl)
- with
- | None -> None
- | Some (newt, subst, varlist, id2, dir, pos) ->
- match build_clause bag (fun _ -> true)
- Terms.Demodulation newt subst varlist id id2 pos dir
- with
- | None -> assert false
- | Some x -> Some (x,true)
+ | Some (newt, subst, id2, dir, pos) ->
+ begin
+ match build_clause bag (fun _ -> true) Terms.Demodulation
+ newt subst id id2 pos dir
+ with
+ | None -> assert false
+ | Some x -> Some (x,false)
+ end
+ | None ->
+ match first_position
+ [3] (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) r
+ (demod table vl)
+ with
+ | None -> None
+ | Some (newt, subst, id2, dir, pos) ->
+ match build_clause bag (fun _ -> true)
+ Terms.Demodulation newt subst id id2 pos dir
+ with
+ | None -> assert false
+ | Some x -> Some (x,true)
;;
let parallel_demod table vl bag t pos ctx id =
match demod table vl t with
- | None -> (bag,t,id)
- | Some (newside, subst, vl, id2, dir) ->
- match build_clause bag (fun _ -> true)
- Terms.Demodulation (ctx newside) subst vl id id2 pos dir
- with
- | None -> assert false
- | Some (bag,(id,_,_,_)) ->
- (bag,newside,id)
+ | None -> (bag,t,id)
+ | Some (newside, subst, id2, dir) ->
+ match build_clause bag (fun _ -> true)
+ Terms.Demodulation (ctx newside) subst id id2 pos dir
+ with
+ | None -> assert false
+ | Some (bag,(id,_,_,_)) ->
+ (bag,newside,id)
;;
let demodulate_once ~jump_to_right bag (id, literal, vl, pr) table =
match literal with
| Terms.Predicate t -> assert false
| Terms.Equation (l,r,ty,_) ->
- let bag,l,id1 = if jump_to_right then (bag,l,id) else
- parallel_positions bag [2]
- (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) id l
- (parallel_demod table vl)
- in
- let jump_to_right = id1 = id in
- let bag,r,id2 =
- parallel_positions bag [3]
- (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) id1 r
- (parallel_demod table vl)
- in
- if id = id2 then None
- else
- let cl,_,_ = Terms.get_from_bag id2 bag in
- Some ((bag,cl),jump_to_right)
+ let bag,l,id1 = if jump_to_right then (bag,l,id) else
+ parallel_positions bag [2]
+ (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; x; r ]) id l
+ (parallel_demod table vl)
+ in
+ let jump_to_right = id1 = id in
+ let bag,r,id2 =
+ parallel_positions bag [3]
+ (fun x -> Terms.Node [ Terms.Leaf B.eqP; ty; l; x ]) id1 r
+ (parallel_demod table vl)
+ in
+ if id = id2 then None
+ else
+ let cl,_,_ = Terms.get_from_bag id2 bag in
+ Some ((bag,cl),jump_to_right)
;;
let rec demodulate ~jump_to_right bag clause table =
match demodulate_once ~jump_to_right bag clause table with
| None -> bag, clause
| Some ((bag, clause),r) -> demodulate ~jump_to_right:r
- bag clause table
+ bag clause table
;;
let rec demodulate_old ~jump_to_right bag clause table =
match demodulate_once_old ~jump_to_right bag clause table with
- | None -> bag, clause
- | Some ((bag, clause),r) -> demodulate_old ~jump_to_right:r
- bag clause table
+ | None -> bag, clause
+ | Some ((bag, clause),r) -> demodulate_old ~jump_to_right:r
+ bag clause table
;;
let are_alpha_eq cl1 cl2 =
let get_term (_,lit,_,_) =
- match lit with
- | Terms.Predicate _ -> assert false
- | Terms.Equation (l,r,ty,_) ->
- Terms.Node [Terms.Leaf B.eqP; ty; l ; r]
+ match lit with
+ | Terms.Predicate _ -> assert false
+ | Terms.Equation (l,r,ty,_) ->
+ Terms.Node [Terms.Leaf B.eqP; ty; l ; r]
in
- try ignore(Unif.alpha_eq (get_term cl1) (get_term cl2)) ; true
- with FoUnif.UnificationFailure _ -> false
+ try ignore(Unif.alpha_eq (get_term cl1) (get_term cl2)) ; true
+ with FoUnif.UnificationFailure _ -> false
;;
let demodulate bag clause table =
(* let (bag1,c1), (_,c2) =*)
- demodulate ~jump_to_right:false bag clause table
-(* demodulate_old ~jump_to_right:false bag clause table*)
+ demodulate ~jump_to_right:false bag clause table
+(* demodulate_old ~jump_to_right:false bag clause table *)
(* in
- if are_alpha_eq c1 c2 then bag1,c1
- else begin
- prerr_endline (Pp.pp_unit_clause c1);
- prerr_endline (Pp.pp_unit_clause c2);
- prerr_endline "Bag :";
- prerr_endline (Pp.pp_bag bag1);
- assert false
- end*)
+ if are_alpha_eq c1 c2 then bag1,c1
+ else begin
+ prerr_endline (Pp.pp_unit_clause c1);
+ prerr_endline (Pp.pp_unit_clause c2);
+ prerr_endline "Bag :";
+ prerr_endline (Pp.pp_bag bag1);
+ assert false
+ end*)
+ ;;
+ let prof_demodulate = HExtlib.profile ~enable "demodulate";;
+ let demodulate bag clause x =
+ prof_demodulate.HExtlib.profile (demodulate bag clause) x
;;
(* move away *)
let is_identity_clause ~unify = function
| _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> true
| _, Terms.Equation (l,r,_,_), vl, proof when unify ->
- (try ignore(Unif.unification vl [] l r); true
- with FoUnif.UnificationFailure _ -> false)
+ (try ignore(Unif.unification vl [] l r); true
+ with FoUnif.UnificationFailure _ -> false)
| _, Terms.Equation (_,_,_,_), _, _ -> false
- | _, Terms.Predicate _, _, _ -> assert false
+ | _, Terms.Predicate _, _, _ -> assert false
;;
- let build_new_clause bag maxvar filter rule t subst vl id id2 pos dir =
- let maxvar, vl, relocsubst = Utils.relocate maxvar vl in
- let subst = Subst.concat relocsubst subst in
- match build_clause bag filter rule t subst vl id id2 pos dir with
+ let build_new_clause bag maxvar filter rule t subst id id2 pos dir =
+ let maxvar, _vl, subst = Utils.relocate maxvar (Terms.vars_of_term
+ (Subst.apply_subst subst t)) subst in
+ match build_clause bag filter rule t subst id id2 pos dir with
| Some (bag, c) -> Some ((bag, maxvar), c)
| None -> None
;;
+ let prof_build_new_clause = HExtlib.profile ~enable "build_new_clause";;
+ let build_new_clause bag maxvar filter rule t subst id id2 pos x =
+ prof_build_new_clause.HExtlib.profile (build_new_clause bag maxvar filter
+ rule t subst id id2 pos) x
+ ;;
let fold_build_new_clause bag maxvar id rule filter res =
let (bag, maxvar), res =
HExtlib.filter_map_acc
- (fun (bag, maxvar) (t,subst,vl,id2,pos,dir) ->
- build_new_clause bag maxvar filter rule t subst vl id id2 pos dir)
+ (fun (bag, maxvar) (t,subst,id2,pos,dir) ->
+ build_new_clause bag maxvar filter rule t subst id id2 pos dir)
(bag, maxvar) res
in
bag, maxvar, res
| (d, (id,Terms.Equation (l,r,ty,_),vl,_))-> id, d, l, r, vl
|_ -> assert false
in
- let reverse = (dir = Terms.Left2Right) = b in
+ let reverse = (dir = Terms.Left2Right) = b in
let l, r, proof_rewrite_dir = if reverse then l,r,Terms.Left2Right
- else r,l, Terms.Right2Left in
+ else r,l, Terms.Right2Left in
(id,proof_rewrite_dir,Terms.Node [ Terms.Leaf B.eqP; ty; l; r ], vl)
in
let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in
let t = Terms.Node [ Terms.Leaf B.eqP; ty; l; r ] in
let locked_vars = if unify then [] else vl in
let rec aux = function
- | [] -> None
- | (id2,dir,c,vl1)::tl ->
- try
- let subst,vl1 = Unif.unification (vl@vl1) locked_vars c t in
+ | [] -> None
+ | (id2,dir,c,vl1)::tl ->
+ try
+ let subst = Unif.unification (vl@vl1) locked_vars c t in
Some (id2, dir, subst)
- with FoUnif.UnificationFailure _ -> aux tl
+ with FoUnif.UnificationFailure _ -> aux tl
in
- aux (cands1 @ cands2)
+ aux (cands1 @ cands2)
;;
let is_subsumed ~unify bag maxvar (id, lit, vl, _) table =
| Terms.Predicate _ -> assert false
| Terms.Equation (l,r,ty,_) ->
match rewrite_eq ~unify l r ty vl table with
- | None -> None
- | Some (id2, dir, subst) ->
- let id_t = Terms.Node [ Terms.Leaf B.eqP; ty; r; r ] in
- build_new_clause bag maxvar (fun _ -> true)
- Terms.Superposition id_t subst [] id id2 [2] dir
+ | None -> None
+ | Some (id2, dir, subst) ->
+ let id_t = Terms.Node [ Terms.Leaf B.eqP; ty; r; r ] in
+ build_new_clause bag maxvar (fun _ -> true)
+ Terms.Superposition id_t subst id id2 [2] dir
+ ;;
+ let prof_is_subsumed = HExtlib.profile ~enable "is_subsumed";;
+ let is_subsumed ~unify bag maxvar c x =
+ prof_is_subsumed.HExtlib.profile (is_subsumed ~unify bag maxvar c) x
;;
(* id refers to a clause proving contextl l = contextr r *)
match acc with
| None -> None
| Some(bag,maxvar,(id,lit,vl,p),subst) ->
- let l = Subst.apply_subst subst l in
- let r = Subst.apply_subst subst r in
- try
- let subst1,vl1 = Unif.unification vl [] l r in
+ let l = Subst.apply_subst subst l in
+ let r = Subst.apply_subst subst r in
+ try
+ let subst1 = Unif.unification vl [] l r in
let lit =
match lit with Terms.Predicate _ -> assert false
| Terms.Equation (l,r,ty,o) ->
Terms.Equation (FoSubst.apply_subst subst1 l,
FoSubst.apply_subst subst1 r, ty, o)
- in
- Some(bag,maxvar,(id,lit,vl1,p),Subst.concat subst1 subst)
- with FoUnif.UnificationFailure _ ->
- match rewrite_eq ~unify l r ty vl table with
+ in
+ Some(bag,maxvar,(id,lit,vl,p),Subst.concat subst1 subst)
+ with FoUnif.UnificationFailure _ ->
+ match rewrite_eq ~unify l r ty vl table with
| Some (id2, dir, subst1) ->
- let newsubst = Subst.concat subst1 subst in
- let id_t =
+ let newsubst = Subst.concat subst1 subst in
+ let id_t =
FoSubst.apply_subst newsubst
- (Terms.Node[Terms.Leaf B.eqP;ty;contextl r;contextr r])
- in
- (match
- build_new_clause bag maxvar (fun _ -> true)
- Terms.Superposition id_t
- subst1 [] id id2 (pos@[2]) dir
- with
- | Some ((bag, maxvar), c) ->
- Some(bag,maxvar,c,newsubst)
- | None -> assert false)
- | None ->
- match l,r with
- | Terms.Node (a::la), Terms.Node (b::lb) when
- a = b && List.length la = List.length lb ->
+ (Terms.Node[Terms.Leaf B.eqP;ty;contextl r;contextr r])
+ in
+ (match
+ build_new_clause bag maxvar (fun _ -> true)
+ Terms.Superposition id_t
+ subst1 id id2 (pos@[2]) dir
+ with
+ | Some ((bag, maxvar), c) ->
+ Some(bag,maxvar,c,newsubst)
+ | None -> assert false)
+ | None ->
+ match l,r with
+ | Terms.Node (a::la), Terms.Node (b::lb) when
+ a = b && List.length la = List.length lb ->
let acc,_,_,_ =
- List.fold_left2
- (fun (acc,pre,postl,postr) a b ->
+ List.fold_left2
+ (fun (acc,pre,postl,postr) a b ->
let newcl =
- fun x -> contextl(Terms.Node (pre@(x::postl))) in
+ fun x -> contextl(Terms.Node (pre@(x::postl))) in
let newcr =
- fun x -> contextr(Terms.Node (pre@(x::postr))) in
+ fun x -> contextr(Terms.Node (pre@(x::postr))) in
let newpos = List.length pre::pos in
let footail l =
if l = [] then [] else List.tl l in
(deep_eq ~unify a b ty
- newpos newcl newcr table acc,pre@[b],
+ newpos newcl newcr table acc,pre@[b],
footail postl, footail postr))
- (acc,[a],List.tl la,List.tl lb) la lb
- in acc
+ (acc,[a],List.tl la,List.tl lb) la lb
+ in acc
| _,_ -> None
;;
+ let prof_deep_eq = HExtlib.profile ~enable "deep_eq";;
+ let deep_eq ~unify l r ty pos contextl contextr table x =
+ prof_deep_eq.HExtlib.profile (deep_eq ~unify l r ty pos contextl contextr table) x
+ ;;
let rec orphan_murder bag acc i =
match Terms.get_from_bag i bag with
- | (_,_,_,Terms.Exact _),discarded,_ -> (discarded,acc)
- | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),true,_ -> (true,acc)
- | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),false,_ ->
+ | (_,_,_,Terms.Exact _),discarded,_ -> (discarded,acc)
+ | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),true,_ -> (true,acc)
+ | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),false,_ ->
if (List.mem i acc) then (false,acc)
else match orphan_murder bag acc i1 with
- | (true,acc) -> (true,acc)
- | (false,acc) ->
- let (res,acc) = orphan_murder bag acc i2 in
- if res then res,acc else res,i::acc
+ | (true,acc) -> (true,acc)
+ | (false,acc) ->
+ let (res,acc) = orphan_murder bag acc i2 in
+ if res then res,acc else res,i::acc
;;
let orphan_murder bag actives cl =
let (id,_,_,_) = cl in
let actives = List.map (fun (i,_,_,_) -> i) actives in
let (res,_) = orphan_murder bag actives id in
- if res then debug "Orphan murdered"; res
+ if res then debug "Orphan murdered"; res
+ ;;
+ let prof_orphan_murder = HExtlib.profile ~enable "orphan_murder";;
+ let orphan_murder bag actives x =
+ prof_orphan_murder.HExtlib.profile (orphan_murder bag actives) x
;;
(* demodulate and check for subsumption *)
if is_identity_clause ~unify:false clause then bag,None
else
match is_subsumed ~unify:false bag maxvar clause table with
- | None -> bag, Some clause
- | Some _ -> bag, None
+ | None -> bag, Some clause
+ | Some _ -> bag, None
;;
let simplify table maxvar bag clause =
match simplify table maxvar bag clause with
- | bag, None ->
- let (id,_,_,_) = clause in
- let (_,_,iter) = Terms.get_from_bag id bag in
- Terms.replace_in_bag (clause,true,iter) bag, None
- | bag, Some clause -> bag, Some clause
+ | bag, None ->
+ let (id,_,_,_) = clause in
+ let (_,_,iter) = Terms.get_from_bag id bag in
+ Terms.replace_in_bag (clause,true,iter) bag, None
+ | bag, Some clause -> bag, Some clause
(*let (id,_,_,_) = clause in
- if orphan_murder bag clause then
- Terms.M.add id (clause,true) bag, Some clause
- else bag, Some clause*)
+ if orphan_murder bag clause then
+ Terms.M.add id (clause,true) bag, Some clause
+ else bag, Some clause*)
+ ;;
+ let prof_simplify = HExtlib.profile ~enable "simplify";;
+ let simplify table maxvar bag x =
+ prof_simplify.HExtlib.profile (simplify table maxvar bag ) x
;;
let one_pass_simplification new_clause (alist,atable) bag maxvar =
match simplify atable maxvar bag new_clause with
- | bag,None -> bag,None (* new_clause has been discarded *)
- | bag,(Some clause) ->
- let ctable = IDX.index_unit_clause IDX.DT.empty clause in
- let bag, alist, atable =
- List.fold_left
- (fun (bag, alist, atable) c ->
- match simplify ctable maxvar bag c with
- |bag,None -> (bag,alist,atable)
- (* an active clause as been discarded *)
- |bag,Some c1 ->
- bag, c :: alist, IDX.index_unit_clause atable c)
- (bag,[],IDX.DT.empty) alist
- in
- bag, Some (clause, (alist,atable))
+ | bag,None -> bag,None (* new_clause has been discarded *)
+ | bag,(Some clause) ->
+ let ctable = IDX.index_unit_clause IDX.DT.empty clause in
+ let bag, alist, atable =
+ List.fold_left
+ (fun (bag, alist, atable) c ->
+ match simplify ctable maxvar bag c with
+ |bag,None -> (bag,alist,atable)
+ (* an active clause as been discarded *)
+ |bag,Some c1 ->
+ bag, c :: alist, IDX.index_unit_clause atable c)
+ (bag,[],IDX.DT.empty) alist
+ in
+ bag, Some (clause, (alist,atable))
+ ;;
+ let prof_one_pass_simplification = HExtlib.profile ~enable "one_pass_simplification";;
+ let one_pass_simplification new_clause t bag x =
+ prof_one_pass_simplification.HExtlib.profile (one_pass_simplification new_clause t bag ) x
;;
let simplification_step ~new_cl cl (alist,atable) bag maxvar new_clause =
let atable1 =
- if new_cl then atable else
- IDX.index_unit_clause atable cl
+ if new_cl then atable else
+ IDX.index_unit_clause atable cl
in
- (* Simplification of new_clause with : *
- * - actives and cl if new_clause is not cl *
- * - only actives otherwise *)
- match
- simplify atable1 maxvar bag new_clause with
- | bag,None -> bag,(Some cl, None) (* new_clause has been discarded *)
- | bag,Some clause ->
- (* Simplification of each active clause with clause *
- * which is the simplified form of new_clause *)
+ (* Simplification of new_clause with : *
+ * - actives and cl if new_clause is not cl *
+ * - only actives otherwise *)
+ match
+ simplify atable1 maxvar bag new_clause with
+ | bag,None -> bag,(Some cl, None) (* new_clause has been discarded *)
+ | bag,Some clause ->
+ (* Simplification of each active clause with clause *
+ * which is the simplified form of new_clause *)
let ctable = IDX.index_unit_clause IDX.DT.empty clause in
- let bag, newa, alist, atable =
- List.fold_left
- (fun (bag, newa, alist, atable) c ->
- match simplify ctable maxvar bag c with
- |bag,None -> (bag, newa, alist, atable)
- (* an active clause as been discarded *)
- |bag,Some c1 ->
- if (c1 == c) then
- bag, newa, c :: alist,
- IDX.index_unit_clause atable c
- else
- bag, c1 :: newa, alist, atable)
- (bag,[],[],IDX.DT.empty) alist
- in
- if new_cl then
- bag, (Some cl, Some (clause, (alist,atable), newa))
- else
- (* if new_clause is not cl, we simplify cl with clause *)
- match simplify ctable maxvar bag cl with
- | bag,None ->
- (* cl has been discarded *)
- bag,(None, Some (clause, (alist,atable), newa))
- | bag,Some cl1 ->
- bag,(Some cl1, Some (clause, (alist,atable), newa))
+ let bag, newa, alist, atable =
+ List.fold_left
+ (fun (bag, newa, alist, atable) c ->
+ match simplify ctable maxvar bag c with
+ |bag,None -> (bag, newa, alist, atable)
+ (* an active clause as been discarded *)
+ |bag,Some c1 ->
+ if (c1 == c) then
+ bag, newa, c :: alist,
+ IDX.index_unit_clause atable c
+ else
+ bag, c1 :: newa, alist, atable)
+ (bag,[],[],IDX.DT.empty) alist
+ in
+ if new_cl then
+ bag, (Some cl, Some (clause, (alist,atable), newa))
+ else
+ (* if new_clause is not cl, we simplify cl with clause *)
+ match simplify ctable maxvar bag cl with
+ | bag,None ->
+ (* cl has been discarded *)
+ bag,(None, Some (clause, (alist,atable), newa))
+ | bag,Some cl1 ->
+ bag,(Some cl1, Some (clause, (alist,atable), newa))
+ ;;
+ let prof_simplification_step = HExtlib.profile ~enable "simplification_step";;
+ let simplification_step ~new_cl cl (alist,atable) bag maxvar x =
+ prof_simplification_step.HExtlib.profile (simplification_step ~new_cl cl (alist,atable) bag maxvar) x
;;
let keep_simplified cl (alist,atable) bag maxvar =
let rec keep_simplified_aux ~new_cl cl (alist,atable) bag newc =
- if new_cl then
- match simplification_step ~new_cl cl (alist,atable) bag maxvar cl with
- | _,(None, _) -> assert false
- | bag,(Some _, None) -> bag,None
- | bag,(Some _, Some (clause, (alist,atable), newa)) ->
- keep_simplified_aux ~new_cl:(cl!=clause) clause (alist,atable)
- bag (newa@newc)
- else
- match newc with
- | [] -> bag, Some (cl, (alist,atable))
- | hd::tl ->
- match simplification_step ~new_cl cl
- (alist,atable) bag maxvar hd with
- | _,(None,None) -> assert false
- | bag,(Some _,None) ->
- keep_simplified_aux ~new_cl cl (alist,atable) bag tl
- | bag,(None, Some _) -> bag,None
- | bag,(Some cl1, Some (clause, (alist,atable), newa)) ->
- let alist,atable =
- (clause::alist, IDX.index_unit_clause atable clause)
- in
- keep_simplified_aux ~new_cl:(cl!=cl1) cl1 (alist,atable)
- bag (newa@tl)
+ if new_cl then
+ match simplification_step ~new_cl cl (alist,atable) bag maxvar cl with
+ | _,(None, _) -> assert false
+ | bag,(Some _, None) -> bag,None
+ | bag,(Some _, Some (clause, (alist,atable), newa)) ->
+ keep_simplified_aux ~new_cl:(cl!=clause) clause (alist,atable)
+ bag (newa@newc)
+ else
+ match newc with
+ | [] -> bag, Some (cl, (alist,atable))
+ | hd::tl ->
+ match simplification_step ~new_cl cl
+ (alist,atable) bag maxvar hd with
+ | _,(None,None) -> assert false
+ | bag,(Some _,None) ->
+ keep_simplified_aux ~new_cl cl (alist,atable) bag tl
+ | bag,(None, Some _) -> bag,None
+ | bag,(Some cl1, Some (clause, (alist,atable), newa)) ->
+ let alist,atable =
+ (clause::alist, IDX.index_unit_clause atable clause)
+ in
+ keep_simplified_aux ~new_cl:(cl!=cl1) cl1 (alist,atable)
+ bag (newa@tl)
in
- keep_simplified_aux ~new_cl:true cl (alist,atable) bag []
+ keep_simplified_aux ~new_cl:true cl (alist,atable) bag []
+ ;;
+ let prof_keep_simplified = HExtlib.profile ~enable "keep_simplified";;
+ let keep_simplified cl t bag x =
+ prof_keep_simplified.HExtlib.profile (keep_simplified cl t bag) x
;;
(* this is like simplify but raises Success *)
let simplify_goal ~no_demod maxvar table bag g_actives clause =
let bag, clause =
- if no_demod then bag, clause else demodulate bag clause table
+ if no_demod then bag, clause else demodulate bag clause table
in
if List.exists (are_alpha_eq clause) g_actives then None else
if (is_identity_clause ~unify:true clause)
then raise (Success (bag, maxvar, clause))
else
- let (id,lit,vl,_) = clause in
+ let (id,lit,vl,_) = clause in
if vl = [] then Some (bag,clause)
else
- let l,r,ty =
- match lit with
- | Terms.Equation(l,r,ty,_) -> l,r,ty
- | _ -> assert false
- in
- match deep_eq ~unify:true l r ty [] (fun x -> x) (fun x -> x)
- table (Some(bag,maxvar,clause,Subst.id_subst)) with
- | None -> Some (bag,clause)
- | Some (bag,maxvar,cl,subst) ->
- prerr_endline "Goal subsumed";
- raise (Success (bag,maxvar,cl))
+ let l,r,ty =
+ match lit with
+ | Terms.Equation(l,r,ty,_) -> l,r,ty
+ | _ -> assert false
+ in
+ match deep_eq ~unify:true l r ty [] (fun x -> x) (fun x -> x)
+ table (Some(bag,maxvar,clause,Subst.id_subst)) with
+ | None -> Some (bag,clause)
+ | Some (bag,maxvar,cl,subst) ->
+ prerr_endline "Goal subsumed";
+ raise (Success (bag,maxvar,cl))
(*
else match is_subsumed ~unify:true bag maxvar clause table with
- | None -> Some (bag, clause)
- | Some ((bag,maxvar),c) ->
- prerr_endline "Goal subsumed";
- raise (Success (bag,maxvar,c))
+ | None -> Some (bag, clause)
+ | Some ((bag,maxvar),c) ->
+ prerr_endline "Goal subsumed";
+ raise (Success (bag,maxvar,c))
*)
;;
+ let prof_simplify_goal = HExtlib.profile ~enable "simplify_goal";;
+ let simplify_goal ~no_demod maxvar table bag g_actives x =
+ prof_simplify_goal.HExtlib.profile ( simplify_goal ~no_demod maxvar table bag g_actives) x
+ ;;
+
(* =================== inference ===================== *)
(* this is OK for both the sup_left and sup_right inference steps *)
| Terms.Equation (l,r,_,o) ->
let side, newside = if dir=Terms.Left2Right then l,r else r,l in
try
- let subst, varlist =
+ let subst =
Unif.unification (varlist@vl) [] subterm side
- in
+ in
if o = Terms.Incomparable then
let side = Subst.apply_subst subst side in
let newside = Subst.apply_subst subst newside in
let o = Order.compare_terms side newside in
(* XXX: check Riazanov p. 33 (iii) *)
if o <> Terms.Lt && o <> Terms.Eq then
- Some (context newside, subst, varlist, id, pos, dir)
+ Some (context newside, subst, id, pos, dir)
else
((*prerr_endline ("Filtering: " ^
Pp.pp_foterm side ^ " =(< || =)" ^
Pp.pp_foterm newside);*)None)
else
- Some (context newside, subst, varlist, id, pos, dir)
+ Some (context newside, subst, id, pos, dir)
with FoUnif.UnificationFailure _ -> None)
(IDX.ClauseSet.elements cands)
;;
in
bag, (alist, List.fold_left IDX.index_unit_clause IDX.DT.empty alist)
in*)
- debug "Simplified active clauses with fact";
+ debug "Simplified active clauses with fact";
(* We superpose active clauses with current *)
let bag, maxvar, new_clauses =
List.fold_left
bag, maxvar, newc @ acc)
(bag, maxvar, []) alist
in
- debug "First superpositions";
- (* We add current to active clauses so that it can be *
- * superposed with itself *)
+ debug "First superpositions";
+ (* We add current to active clauses so that it can be *
+ * superposed with itself *)
let alist, atable =
current :: alist, IDX.index_unit_clause atable current
in
- debug "Indexed";
+ debug "Indexed";
let fresh_current, maxvar = Utils.fresh_unit_clause maxvar current in
- (* We need to put fresh_current into the bag so that all *
- * variables clauses refer to are known. *)
+ (* We need to put fresh_current into the bag so that all *
+ * variables clauses refer to are known. *)
let bag, fresh_current = Terms.add_to_bag fresh_current bag in
- (* We superpose current with active clauses *)
+ (* We superpose current with active clauses *)
let bag, maxvar, additional_new_clauses =
superposition_with_table bag maxvar fresh_current atable
in
- debug "Another superposition";
+ debug "Another superposition";
let new_clauses = new_clauses @ additional_new_clauses in
- debug (Printf.sprintf "Demodulating %d clauses"
- (List.length new_clauses));
+ debug (Printf.sprintf "Demodulating %d clauses"
+ (List.length new_clauses));
let bag, new_clauses =
HExtlib.filter_map_monad (simplify atable maxvar) bag new_clauses
in
- debug "Demodulated new clauses";
+ debug "Demodulated new clauses";
bag, maxvar, (alist, atable), new_clauses
;;
+ let prof_ir = HExtlib.profile ~enable "infer_right";;
+ let infer_right bag maxvar current t =
+ prof_ir.HExtlib.profile (infer_right bag maxvar current) t
+ ;;
+
let infer_left bag maxvar goal (_alist, atable) =
- (* We superpose the goal with active clauses *)
+ (* We superpose the goal with active clauses *)
if (match goal with (_,_,[],_) -> true | _ -> false) then bag, maxvar, []
else
- let bag, maxvar, new_goals =
+ let bag, maxvar, new_goals =
superposition_with_table bag maxvar goal atable
in
- debug "Superposed goal with active clauses";
- (* We simplify the new goals with active clauses *)
+ debug "Superposed goal with active clauses";
+ (* We simplify the new goals with active clauses *)
let bag, new_goals =
List.fold_left
(fun (bag, acc) g ->
- match simplify_goal ~no_demod:false maxvar atable bag [] g with
- | None -> assert false
- | Some (bag,g) -> bag,g::acc)
+ match simplify_goal ~no_demod:false maxvar atable bag [] g with
+ | None -> assert false
+ | Some (bag,g) -> bag,g::acc)
(bag, []) new_goals
in
- debug "Simplified new goals with active clauses";
+ debug "Simplified new goals with active clauses";
bag, maxvar, List.rev new_goals
;;
+ let prof_il = HExtlib.profile ~enable "infer_left";;
+ let infer_left bag maxvar goal t =
+ prof_il.HExtlib.profile (infer_left bag maxvar goal) t
+ ;;
+
end