[1: intro j; cases (Hxy j); cases H3; cases H4; split;
[apply (H5 0);|apply (H7 0)]
|2: cases (H l u Xi X) (Ux Uy); apply Ux; cases Hx; split; [apply H3;]
- cases H4; split; [apply H5] intros (y Hy);cases (H6 (fst y) Hy);
+ cases H4; split; [apply H5] intros (y Hy);cases (H6 (fst y));[2:apply Hy];
exists [apply w] apply H7;
|3: cases (H l u Yi X) (Ux Uy); apply Uy; cases Hy; split; [apply H3;]
- cases H4; split; [apply H5] intros (y Hy);cases (H6 (fst y) Hy);
+ cases H4; split; [apply H5] intros (y Hy);cases (H6 (fst y));[2:apply Hy];
exists [apply w] apply H7;]]
qed.
(λn.fst (a n)) ↑ x → a ↑ (sig_in ?? x h).
intros; cases H (Ha Hx); split [apply Ha] cases Hx;
split; [apply H1] intros;
-cases (H2 (fst y) H3); exists [apply w] assumption;
+cases (H2 (fst y)); [2: apply H3;] exists [apply w] assumption;
qed.
lemma segment_preserves_downarrow:
(λn.fst (a n)) ↓ x → a ↓ (sig_in ?? x h).
intros; cases H (Ha Hx); split [apply Ha] cases Hx;
split; [apply H1] intros;
-cases (H2 (fst y) H3); exists [apply w] assumption;
+cases (H2 (fst y));[2:apply H3]; exists [apply w] assumption;
qed.
(* Fact 2.18 *)
a is_cauchy → (λn:nat.fst (a n)) is_cauchy.
intros 7;
alias symbol "pi1" (instance 3) = "pair pi1".
+alias symbol "pi2" = "pair pi2".
apply (H (λx:{[l,u]} square.U 〈fst (fst x),fst (snd x)〉));
(unfold segment_ordered_uniform_space; simplify);
exists [apply U] split; [assumption;]