L ≟ re (carr (acarr A))
(* -------------------------------------------- *) ⊢
eq_re A a b ≡ eq_rel L R a b.
+
+(* XXX This seems to be a pattern for equations in setoid(0) *)
+unification hint 0 ≔ AA;
+ A ≟ carr (acarr AA),
+ R ≟ setoid1_of_setoid (RE AA)
+(*-----------------------------------------------*) ⊢
+ re A ≡ carr1 R.
+
+alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2".
+unification hint 0 ≔ S : Alpha, x,y: re (carr (acarr S));
+ SS ≟ RE S,
+ TT ≟ setoid1_of_setoid SS,
+ T ≟ carr1 TT
+(*-----------------------------------------*) ⊢
+ eq_re S x y ≡ eq_rel1 T (eq1 TT) x y.
+(* contructors are morphisms *)
nlemma c_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A).
-#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 · s2));
-#a; nelim a;
-##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj;
-##|#x a' b b'; ncases a'; /2/ by conj;
-##|##4,5: #r1 r2 IH1 IH2 a'; ncases a'; nnormalize; /2/ by conj;
-##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##]
-nqed.
+#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 · s2)); #a; nelim a; /2/ by conj; nqed.
(* XXX This is the good format for hints about morphisms, fix the others *)
alias symbol "hint_decl" (instance 1) = "hint_decl_Type0".
fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ c SS A B.
nlemma o_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A).
-#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 + s2));
-#a; nelim a;
-##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj;
-##|#x a' b b'; ncases a'; /2/ by conj;
-##|##4,5: #r1 r2 IH1 IH2 a'; ncases a'; nnormalize; /2/ by conj;
-##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##]
-nqed.
+#A; napply (mk_binary_morphism … (λs1,s2:re A. s1 + s2)); #a; nelim a; /2/ by conj; nqed.
unification hint 0 ≔ S:Alpha, A,B:re (carr (acarr S));
SS ≟ carr (acarr S),
(*--------------------------------------------------------------------------*) ⊢
fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ o SS A B.
+nlemma k_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A).
+#A; @(λs1:re A. s1^* ); #a; nelim a; /2/ by conj; nqed.
+
+unification hint 0 ≔ S:Alpha, A:re (carr (acarr S));
+ SS ≟ carr (acarr S),
+ MM ≟ mk_unary_morphism ?? (λB.B^* ) (prop1 ?? (k_is_morph S)),
+ T ≟ RE S
+(*--------------------------------------------------------------------------*) ⊢
+ fun1 T T MM A ≡ k SS A.
+
+nlemma s_is_morph : ∀A:Alpha.A ⇒_0 (re A).
+#A; @(λs1:A. s ? s1 ); #x y E; //; nqed.
+
+unification hint 0 ≔ S:Alpha, a: carr (acarr S);
+ SS ≟ carr (acarr S),
+ MM ≟ mk_unary_morphism ?? (λb.s ? b ) (prop1 ?? (s_is_morph S)),
+ T ≟ RE S, T1 ≟ acarr S
+(*--------------------------------------------------------------------------*) ⊢
+ fun1 T1 T MM a ≡ s SS a.
+
(* end setoids support for re *)
nlet rec conjunct S (l : list (list S)) (L : lang S) on l: CProp[0] ≝
nlemma subW : ∀S.∀a,b:Ω^S.∀w.w ∈ (a - b) → w ∈ a.
#S a b w; nnormalize; *; //; nqed.
+alias symbol "eclose" (instance 3) = "eclose".
nlemma erase_bull : ∀S:Alpha.∀a:pitem S. |\fst (•a)| = |a|.
#S a; nelim a; // by {};
##[ #e1 e2 IH1 IH2;
napply Hw2;
nqed.
-(* XXX This seems to be a pattern for equations *)
-alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2".
-unification hint 0 ≔ S : Alpha, x,y: re (carr (acarr S));
- SS ≟ RE S,
- TT ≟ setoid1_of_setoid SS,
- T ≟ carr1 TT
-(*-----------------------------------------*) ⊢
- eq_re S x y ≡ eq_rel1 T (eq1 TT) x y.
-(* XXX the previous hint does not work *)
+
(* theorem 16: 1 → 3 *)
nlemma odot_dot_aux : ∀S:Alpha.∀e1,e2: pre S.
napply (.=_1 (cupA …)^-1);
napply (.=_1 (cupA …)^-1 ╪_1 #);
napply (.=_1 (cupA …));
- nlapply (erase_bull S e2'); #XX;
- napply (.=_1 (((# ╪_1 (┼_1 ?) )╪_1 #)╪_1 #)); ##[##2: napply XX; ##| ##skip]
+ napply (.=_1 (((# ╪_1 (┼_1 (erase_bull S e2')) )╪_1 #)╪_1 #));
//;
##| ncases e2; #e2' b2'; nchange in match (𝐋\p ?) with (?∪?∪?);
napply (.=_1 (cupA…));
napply (.=_1 (cupA …));
napply (.=_1 # ╪_1 ((erase_dot ???)^-1 ╪_1 (cup0 ??)));
napply (.=_1 # ╪_1 (cupC…));
- napply (.=_1 (cupA …)^-1);
- //;
+ napply (.=_1 (cupA …)^-1); //;
##| #e1 e2 IH1 IH2;
nchange in match (•(?+?)) with (•e1 ⊕ •e2);
napply (.=_1 (oplus_cup …));
napply (.=_1 # ╪_1 (cupA ????)^-1);
napply (.=_1 # ╪_1 (cupC…));
napply (.=_1 (cupA ????)^-1);
- napply (.=_1 # ╪_1 (erase_plus ???)^-1);
- //;
+ napply (.=_1 # ╪_1 (erase_plus ???)^-1); //;
##| #e; nletin e' ≝ (\fst (•e)); nletin b' ≝ (\snd (•e)); #IH;
nchange in match (𝐋\p ?) with (𝐋\p 〈e'^*,true〉);
nchange in match (𝐋\p ?) with (𝐋\p (e'^* ) ∪ {[ ]});
-STOP
- nchange in match (𝐋\p (pk ? e')) with (𝐋\p e' · 𝐋 |e'|^* );
- nrewrite > (erase_bull…e);
- nrewrite > (erase_star …);
- nrewrite > (?: 𝐋\p e' = 𝐋\p e ∪ (𝐋 .|e| - ϵ b')); ##[##2:
- nchange in IH : (??%?) with (𝐋\p e' ∪ ϵ b'); ncases b' in IH;
- ##[ #IH; nrewrite > (cup_sub…); //; nrewrite < IH;
- nrewrite < (cup_sub…); //; nrewrite > (subK…); nrewrite > (cup0…);//;
- ##| nrewrite > (sub0 …); #IH; nrewrite < IH; nrewrite > (cup0 …);//; ##]##]
- nrewrite > (cup_dotD…); nrewrite > (cupA…);
- nrewrite > (?: ((?·?)∪{[]} = 𝐋 .|e^*|)); //;
- nchange in match (𝐋 .|e^*|) with ((𝐋. |e|)^* ); napply sub_dot_star;##]
+ (* nwhd in match (𝐋\p e'^* ); (* XXX bug uncertain *) *)
+ nchange in ⊢ (???(??%?)?) with (𝐋\p e' · ?);
+ napply (.=_1 (# ╪_1 (┼_1 (┼_0 (erase_bull S e)))) ╪_1 #);
+ napply (.=_1 (# ╪_1 (erase_star …)) ╪_1 #);
+ ncut ( 𝐋\p e' = 𝐋\p e ∪ (𝐋 |e| - ϵ b')); ##[
+ nchange in IH : (???%?) with (𝐋\p e' ∪ ϵ b'); ncases b' in IH;
+ ##[ #IH; napply (?^-1); napply (.=_1 (cup_sub … (not_epsilon_lp…)));
+ napply (.=_1 (IH^-1 ╪_1 #));
+ alias symbol "invert" = "setoid1 symmetry".
+ (* XXX too slow if ambiguous, since it tries with a ? (takes 12s) then
+ tries with sym0 and fails immediately, then with sym1 that is OK *)
+ napply (.=_1 (cup_sub …(not_epsilon_lp …))^-1);
+ napply (.=_1 # ╪_1 (subK…)); napply (.=_1 (cup0…)); //;
+ ##| #IH; napply (?^-1); napply (.=_1 # ╪_1 (sub0 …));
+ napply (.=_1 IH^-1); napply (.=_1 (cup0 …)); //; ##]##] #EE;
+ napply (.=_1 (EE ╪_1 #) ╪_1 #);
+ napply (.=_1 (cup_dotD…) ╪_1 #);
+ napply (.=_1 (cupA…));
+ napply (.=_1 # ╪_1 (sub_dot_star…)); //; ##]
nqed.
+STOP
+
(* theorem 16: 3 *)
nlemma odot_dot:
∀S.∀e1,e2: pre S. 𝐋\p (e1 ⊙ e2) = 𝐋\p e1 · 𝐋 .|\fst e2| ∪ 𝐋\p e2.