left associative with precedence 55
for @{ 'compose $a $b }.
+notation "hvbox(U break ↓ V)" non associative with precedence 80 for @{ 'fintersects $U $V }.
+
notation "(a \sup b)" left associative with precedence 60 for @{ 'exp $a $b}.
notation "s \sup (-1)" with precedence 60 for @{ 'invert $s }.
notation < "s \sup (-1) x" with precedence 60 for @{ 'invert_appl $s $x}.
definition fintersects ≝ λA:axiom_set.λU,V:Ω \sup A.↓U ∩ ↓V.
-notation "hvbox(U break ↓ V)" non associative with precedence 80 for @{ 'fintersects $U $V }.
-
interpretation "fintersects" 'fintersects U V = (fintersects _ U V).
record convergent_generated_topology : Type ≝
interpretation "subset comprehension" 'comprehension s p =
(comprehension s p).
-definition ext: ∀o: basic_pair. (form o) → Ω \sup |(concr o)| ≝
+definition ext: ∀o: basic_pair. form o → Ω \sup |(concr o)| ≝
λo,f.{x ∈ (concr o) | x ♮(rel o) f}.
-definition downarrow ≝
+definition fintersects ≝
λo: basic_pair.λa,b: form o.
- {c | ext ? c ⊆ ext ? a ∩ ext ? b }.
\ No newline at end of file
+ {c | ext ? c ⊆ ext ? a ∩ ext ? b }.
+
+interpretation "fintersects" 'fintersects U V = (fintersects _ U V).
+
+definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp ≝
+ λo,x,S. ∃y. y ∈ S ∧ x ⊩ y.
+
+interpretation "basic pair relation for subsets" 'Vdash2 x y = (relS _ x y).
+interpretation "basic pair relation for subsets (non applied)" 'Vdash = (relS _).
+
+definition convergence ≝
+ λo: basic_pair.∀a: concr o.∀U,V: form o. a ⊩ U → a ⊩ V → a ⊩ (U ↓ V).
\ No newline at end of file