#n; nelim n; nnormalize; //; nqed.
*)
-(*
+(* deleterio
ntheorem plus_n_SO : ∀n:nat. S n = n+S O.
//; nqed. *)
ntheorem not_le_S_S_to_not_le: ∀ n,m:nat. S n ≰ S m → n ≰ m.
/3/; nqed.
+naxiom decidable_le: ∀n,m. decidable (n≤m).
+(*
ntheorem decidable_le: ∀n,m. decidable (n≤m).
napply nat_elim2; #n; /3/;
-#m; #dec; ncases dec;/4/; nqed.
+#m; #dec; ncases dec;/4/; nqed. *)
ntheorem decidable_lt: ∀n,m. decidable (n < m).
#n; #m; napply decidable_le ; nqed.
ntheorem le_plus: ∀n1,n2,m1,m2:nat. n1 ≤ n2 \to m1 ≤ m2
→ n1 + m1 ≤ n2 + m2.
-#n1; #n2; #m1; #m2; #len; #lem; napply transitive_le;
+#n1; #n2; #m1; #m2; #len; #lem; napply (transitive_le ? (n1+m2));
/2/; nqed.
ntheorem le_plus_n :∀n,m:nat. m ≤ n + m.
nqed.
ntheorem lt_times_n: ∀n,m:nat. O < n → m ≤ n*m.
-(* bello *)
+#n; #m; #H; napplyS monotonic_le_times_l;
/2/; nqed.
ntheorem le_times_to_le:
##]
nqed.
-ntheorem le_S_times_2: ∀n,m.O < m → n ≤ m → n < 2*m.
+ntheorem le_S_times_2: ∀n,m.O < m → n ≤ m → S n ≤ 2*m.
#n; #m; #posm; #lenm; (* interessante *)
-nnormalize; napplyS (le_plus n); //; nqed.
+napplyS (le_plus n); //; nqed.
(* times & lt *)
(*