}.
record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝
- { positive: ∀u:V. os_le V 0 u → os_le K 0 (T u);
+ { positive: ∀u:V. (0:carrier V)≤u → (0:carrier K)≤T u;
linear1: ∀u,v:V. T (u+v) = T u + T v;
linear2: ∀u:V.∀k:K. T (k*u) = k*(T u)
}.
definition is_riesz_norm ≝
λR:real.λV:riesz_space R.λnorm:norm R V.
- ∀f,g:V. os_le V (absolute_value ? V f) (absolute_value ? V g) →
- os_le R (n_function R V norm f) (n_function R V norm g).
+ ∀f,g:V. absolute_value ? V f ≤ absolute_value ? V g →
+ n_function R V norm f ≤ n_function R V norm g.
record riesz_norm (R:real) (V:riesz_space R) : Type ≝
{ rn_norm:> norm R V;
record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop
\def
{ ars_archimedean: ∃u:S.∀n.∀a.∀p:n > O.
- os_le S
- (absolute_value ? S a)
- ((inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u) →
+ absolute_value ? S a ≤
+ (inv K (sum_field K n) (not_eq_sum_field_zero K n p))* u →
a = 0
}.
record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝
{ compat_mult_le:
∀f,g:A.
- os_le A (zero A) f → os_le A (zero A) g → os_le A (zero A) (a_mult ? A f g);
+ zero A ≤ f → zero A ≤ g → zero A ≤ a_mult ? A f g;
compat_mult_meet:
∀f,g,h:A.
l_meet A f g = (zero A) → l_meet A (a_mult ? A h f) g = (zero A)