fst (List.nth (constructors_of_inductive_type uri i) (j-1))
with Not_found -> assert false)
+let hide_coercions = ref true;;
+
let ast_of_acic0 term_info acic k =
let k = k term_info in
let id_to_uris = term_info.uri in
| Cic.ALetIn (id,n,s,t) ->
idref id (Ast.LetIn ((CicNotationUtil.name_of_cic_name n, None),
k s, k t))
- | Cic.AAppl (aid,args) -> idref aid (Ast.Appl (List.map k args))
+ | Cic.AAppl (aid,(Cic.AConst _ as he::tl as args))
+ | Cic.AAppl (aid,(Cic.AMutInd _ as he::tl as args))
+ | Cic.AAppl (aid,(Cic.AMutConstruct _ as he::tl as args)) ->
+ if CoercGraph.is_a_coercion (Deannotate.deannotate_term he) &&
+ !hide_coercions
+ then
+ let rec last =
+ function
+ [] -> assert false
+ | [t] -> t
+ | _::tl -> last tl
+ in
+ idref aid (k (last tl))
+ else
+ idref aid (Ast.Appl (List.map k args))
+ | Cic.AAppl (aid,args) ->
+ idref aid (Ast.Appl (List.map k args))
| Cic.AConst (id,uri,substs) ->
register_uri id uri;
idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs))
* http://helm.cs.unibo.it/
*)
+val hide_coercions: bool ref
+
(** {2 Persistant state handling} *)
type interpretation_id
is_finite_enumerable:> finite_enumerable semigroup
}.
-notation < "S"
-for @{ 'semigroup_of_finite_enumerable_semigroup $S }.
-
-interpretation "Semigroup_of_finite_enumerable_semigroup"
- 'semigroup_of_finite_enumerable_semigroup S
-=
- (cic:/matita/algebra/finite_groups/semigroup.con S).
-
-notation < "S"
-for @{ 'magma_of_finite_enumerable_semigroup $S }.
-
-interpretation "Magma_of_finite_enumerable_semigroup"
- 'magma_of_finite_enumerable_semigroup S
-=
- (cic:/matita/algebra/finite_groups/Magma_of_finite_enumerable_SemiGroup.con S).
-
-notation < "S"
-for @{ 'type_of_finite_enumerable_semigroup $S }.
-
-interpretation "Type_of_finite_enumerable_semigroup"
- 'type_of_finite_enumerable_semigroup S
-=
- (cic:/matita/algebra/finite_groups/Type_of_finite_enumerable_SemiGroup.con S).
-
interpretation "Finite_enumerable representation" 'repr S i =
(cic:/matita/algebra/finite_groups/repr.con S
(cic:/matita/algebra/finite_groups/is_finite_enumerable.con S) i).
group_properties:> isGroup pregroup
}.
-(*notation < "G"
-for @{ 'monoid $G }.
-
-interpretation "Monoid coercion" 'monoid G =
- (cic:/matita/algebra/groups/monoid.con G).*)
-
-notation < "G"
-for @{ 'type_of_group $G }.
-
-interpretation "Type_of_group coercion" 'type_of_group G =
- (cic:/matita/algebra/groups/Type_of_Group.con G).
-
-notation < "G"
-for @{ 'magma_of_group $G }.
-
-interpretation "magma_of_group coercion" 'magma_of_group G =
- (cic:/matita/algebra/groups/Magma_of_Group.con G).
-
notation "hvbox(x \sup (-1))" with precedence 89
for @{ 'ginv $x }.
embed:> monomorphism group G
}.
-notation < "G"
-for @{ 'type_of_subgroup $G }.
-
-interpretation "Type_of_subgroup coercion" 'type_of_subgroup G =
- (cic:/matita/algebra/groups/Type_of_subgroup.con _ G).
-
notation "hvbox(x \sub H)" with precedence 79
for @{ 'subgroupimage $H $x }.
e: magma
}.
-notation < "M" for @{ 'pmmagma $M }.
-interpretation "premonoid magma coercion" 'pmmagma M =
- (cic:/matita/algebra/monoids/magma.con M).
-
record isMonoid (M:PreMonoid) : Prop ≝
{ is_semi_group:> isSemiGroup M;
e_is_left_unit:
monoid_properties:> isMonoid premonoid
}.
-notation < "M" for @{ 'semigroup $M }.
-interpretation "premonoid coercion" 'premonoid M =
- (cic:/matita/algebra/monoids/premonoid.con M).
-
-notation < "M" for @{ 'typeofmonoid $M }.
-interpretation "premonoid coercion" 'typeofmonoid M =
- (cic:/matita/algebra/monoids/Type_of_Monoid.con M).
-
-notation < "M" for @{ 'magmaofmonoid $M }.
-interpretation "premonoid coercion" 'magmaofmonoid M =
- (cic:/matita/algebra/monoids/Magma_of_Monoid.con M).
-
notation "1" with precedence 89
for @{ 'munit }.
op: carrier → carrier → carrier
}.
-notation < "M" for @{ 'carrier $M }.
-interpretation "carrier coercion" 'carrier S =
- (cic:/matita/algebra/semigroups/carrier.con S).
-
notation "hvbox(a break \middot b)"
left associative with precedence 55
for @{ 'magma_op $a $b }.
semigroup_properties:> isSemiGroup magma
}.
-notation < "S" for @{ 'magma $S }.
-interpretation "magma coercion" 'magma S =
- (cic:/matita/algebra/semigroups/magma.con S).
-
definition is_left_unit ≝
λS:SemiGroup. λe:S. ∀x:S. e·x = x.
(fun _ ->
CicNotation.set_active_notations
(List.map fst (CicNotation.get_all_notations ())));
+ addDebugItem "enable coercions hiding"
+ (fun _ -> TermAcicContent.hide_coercions := true);
+ addDebugItem "disable coercions hiding"
+ (fun _ -> TermAcicContent.hide_coercions := false);
end
(** Debugging }}} *)