= (D[x] · x \sup (1+m) + x · D[x \sup (1+m)]).
= (x \sup (1+m) + x · (costante (1+m) · x \sup m)).
= (x \sup (1+m) + costante (1+m) · x \sup (1+m)).
-
-
-
- conclude (x \sup (1+m) + costante (1+m) · x \sup (1+m))
- = (costante 1 · x \sup (1+m) + costante (1+m) ·(x) \sup (1+m)) proof.
- by (Fmult_one_f ((x)\sup(1+m)))
- we proved (costante 1·(x)\sup(1+m)=(x)\sup(1+m)) (previous).
- by (eq_OF_eq ? ? (λfoo:(R→R).foo+costante (1+m)·(x)\sup(1+m)) (costante 1
- ·(x)\sup(1
- +m)) ((x)\sup(1
- +m)) previous)
- done.
- = ((x)\sup(1+m)·costante 1+costante (1+m)·(x)\sup(1+m)) proof.
- by (Fmult_commutative (costante 1) ((x)\sup(1+m)))
- we proved (costante 1·(x)\sup(1+m)=(x)\sup(1+m)·costante 1) (previous).
- by (eq_f ? ? (λfoo:(R→R).foo+costante (1+m)·(x)\sup(1+m)) (costante 1
- ·(x)\sup(1+m)) ((x)\sup(1
- +m)
- ·costante
- 1) previous)
- done.
- = ((x)\sup(1+m)·costante 1+(x)\sup(1+m)·costante (1+m)) proof.
- by (Fmult_commutative ((x)\sup(1+m)) (costante (1+m)))
- we proved ((x)\sup(1+m)·costante (1+m)=costante (1+m)·(x)\sup(1+m))
-
- (previous)
- .
- by (eq_OF_eq ? ? (λfoo:(R→R).(x)\sup(1+m)·costante 1+foo) ((x)\sup(1+m)
- ·costante
- (1+m)) (costante
- (1
- +m)
- ·(x)\sup(1
- +m)) previous)
- done.
- = ((x)\sup(1+m)·(costante 1+costante (1+m))) proof.
- by (Fmult_Fplus_distr ((x)\sup(1+m)) (costante 1) (costante (1+m)))
- we proved
- ((x)\sup(1+m)·(costante 1+costante (1+m))
- =(x)\sup(1+m)·costante 1+(x)\sup(1+m)·costante (1+m))
-
- (previous)
- .
- by (sym_eq ? ((x)\sup(1+m)·(costante 1+costante (1+m))) ((x)\sup(1+m)
- ·costante 1
- +(x)\sup(1+m)
- ·costante (1+m)) previous)
- done.
- = ((costante 1+costante (1+m))·(x)\sup(1+m))
- exact (Fmult_commutative ((x)\sup(1+m)) (costante 1+costante (1+m))).
- = (costante (1+(1+m))·(x)\sup(1+m)) proof.
- by (costante_sum 1 (1+m))
- we proved (costante 1+costante (1+m)=costante (1+(1+m))) (previous).
- by (eq_f ? ? (λfoo:(R→R).foo·(x)\sup(1+m)) (costante 1+costante (1+m)) (costante
- (1
- +(1
- +m))) previous)
- done.
- = (costante (1+1+m)·(x)\sup(1+m)) proof.
- by (assoc_plus 1 1 m)
- we proved (1+1+m=1+(1+m)) (previous).
- by (eq_OF_eq ? ? (λfoo:nat.costante foo·(x)\sup(1+m)) ? ? previous)
- done.
- = (costante (2+m)·(x)\sup(1+m)) proof done.
- by (plus_n_SO 1)
- we proved (2=1+1) (previous).
- by (eq_OF_eq ? ? (λfoo:nat.costante (foo+m)·(x)\sup(1+m)) ? ? previous)
- done.
-
-
-(* end auto($Revision: 8206 $) proof: TIME=0.06 SIZE=100 DEPTH=100 *) done.
-qed.
+ = ((2+m) · x \sup (1+m)) by Fmult_one_f Fmult_commutative
+ Fmult_Fplus_distr assoc_plus plus_n_SO costante_sum
+ done.
+qed.
\ No newline at end of file