]> matita.cs.unibo.it Git - helm.git/commitdiff
- reconstruction of lfpx_frees.ma begins ...
authorFerruccio Guidi <ferruccio.guidi@unibo.it>
Mon, 26 Sep 2016 20:39:02 +0000 (20:39 +0000)
committerFerruccio Guidi <ferruccio.guidi@unibo.it>
Mon, 26 Sep 2016 20:39:02 +0000 (20:39 +0000)
- minor improvements

matita/matita/contribs/lambdadelta/basic_2/etc_new/lfxs_main.etc [deleted file]
matita/matita/contribs/lambdadelta/basic_2/relocation/lexs_lexs.ma
matita/matita/contribs/lambdadelta/basic_2/rt_transition/lfpx_frees.ma
matita/matita/contribs/lambdadelta/basic_2/static/frees_fqup.ma
matita/matita/contribs/lambdadelta/basic_2/static/lfxs_main.ma [new file with mode: 0644]
matita/matita/contribs/lambdadelta/ground_2/relocation/rtmap_sor.ma

diff --git a/matita/matita/contribs/lambdadelta/basic_2/etc_new/lfxs_main.etc b/matita/matita/contribs/lambdadelta/basic_2/etc_new/lfxs_main.etc
deleted file mode 100644 (file)
index 688a895..0000000
+++ /dev/null
@@ -1,30 +0,0 @@
-(**************************************************************************)
-(*       ___                                                              *)
-(*      ||M||                                                             *)
-(*      ||A||       A project by Andrea Asperti                           *)
-(*      ||T||                                                             *)
-(*      ||I||       Developers:                                           *)
-(*      ||T||         The HELM team.                                      *)
-(*      ||A||         http://helm.cs.unibo.it                             *)
-(*      \   /                                                             *)
-(*       \ /        This file is distributed under the terms of the       *)
-(*        v         GNU General Public License Version 2                  *)
-(*                                                                        *)
-(**************************************************************************)
-
-include "basic_2/static/lfxs_lfxs.ma".
-include "basic_2/static/frees_frees.ma".
-
-(* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
-
-theorem lfxs_conf: ∀R. R_confluent_lfxs R R R R →
-                   ∀T. confluent … (lfxs R T).
-#R #H1R #T #L0 #L1 * #f1 #Hf1 #HL01 #L2 * #f #Hf #HL02
-lapply (frees_mono … Hf1 … Hf) -Hf1 #Hf12
-lapply (lexs_eq_repl_back … HL01 … Hf12) -f1 #HL01
-elim (lexs_conf … HL01 … HL02)  
-
-lemma pippo: ∀R1,R2,RP1,RP2. R_confluent_lfxs R1 R2 RP1 RP2 →
-             lexs_confluent R1 R2 RP1 cfull RP2 cfull.
-#R1 #R2 #RP1 #RP2 #HR #f #L0 #T0 #T1 #HT01 #T2 #HT02 #L1 #HL01 #L2
-#HL02
index 91dc222975f7defbd3a3995f8d0cf5649cf49023..13ec6ca81e30e81104aaa626d0bdb5b862b0f6d2 100644 (file)
@@ -45,8 +45,8 @@ theorem lexs_trans (RN) (RP) (f): lexs_transitive RN RN RN RN RP →
 (* Basic_2A1: includes: lpx_sn_conf *)
 theorem lexs_conf (RN1) (RP1) (RN2) (RP2):
                   ∀L,f.
-                  (∀g,I,K,V,n. ⬇*[n] L ≡ K.ⓑ{I}V →  ⫱*[n] f = ⫯g → lexs_pw_confluent2_R RN1 RN2 RN1 RP1 RN2 RP2 g K V) →
-                  (∀g,I,K,V,n. ⬇*[n] L ≡ K.ⓑ{I}V →  ⫱*[n] f = ↑g → lexs_pw_confluent2_R RP1 RP2 RN1 RP1 RN2 RP2 g K V) →
+                  (∀g,I,K,V,n. ⬇*[n] L ≡ K.ⓑ{I}V → ⫯g = ⫱*[n] f → lexs_pw_confluent2_R RN1 RN2 RN1 RP1 RN2 RP2 g K V) →
+                  (∀g,I,K,V,n. ⬇*[n] L ≡ K.ⓑ{I}V → ↑g = ⫱*[n] f → lexs_pw_confluent2_R RP1 RP2 RN1 RP1 RN2 RP2 g K V) →
                   pw_confluent2 … (lexs RN1 RP1 f) (lexs RN2 RP2 f) L.
 #RN1 #RP1 #RN2 #RP2 #L elim L -L
 [ #f #_ #_ #L1 #H1 #L2 #H2 >(lexs_inv_atom1 … H1) >(lexs_inv_atom1 … H2) -H2 -H1
index d9f6445a07ec2e8f67cc592072da2f24a4236528..47d35f2e56453600da7de42fadc44a36627fe43a 100644 (file)
 include "basic_2/multiple/frees_lreq.ma".
 include "basic_2/multiple/frees_lift.ma".
 *)
+include "basic_2/relocation/drops_lexs.ma".
 include "basic_2/s_computation/fqup_weight.ma".
+include "basic_2/static/frees_drops.ma".
 include "basic_2/rt_transition/cpx_drops.ma".
-include "basic_2/rt_transition/lfpx.ma".
 
 (* UNCOUNTED PARALLEL RT-TRANSITION FOR LOCAL ENV.S ON REFERRED ENTRIES *****)
 
-(* Properties with context-sensitive free variables ***************************)
+(* Properties with context-sensitive free variables *************************)
 
-lemma lpx_cpx_frees_fwd_sge: ∀h,G,L1,U1,U2. ⦃G, L1⦄ ⊢ U1 ⬈[h] U2 →
-                             ∀L2. ⦃G, L1⦄ ⊢ ⬈[h, U1] L2 →
-                             ∀g1. L1 ⊢ 𝐅*⦃U1⦄ ≡ g1 → ∀g2. L2 ⊢ 𝐅*⦃U2⦄ ≡ g2 →
-                             g2 ⊆ g1.
-#h #G #L1 #U1 @(fqup_wf_ind_eq … G L1 U1) -G -L1 -U1
-#G0 #L0 #U0 #IH #G #L1 * *
-[ #s #HG #HL #HU #U2 #H0 #L2 #_ #g1 #H1 #g2 #H2 -IH -G0 -L0 -U0
-  elim (cpx_inv_sort1 … H0) -H0 #H destruct
-  /3 width=3 by frees_inv_sort, sle_isid_sn/
-| #i #HG #HL #HU #U2 #H0 #L2 #HL12 #g1 #H1 #g2 #H2 destruct
-  elim (cpx_inv_lref1_drops … H0) -H0
-  [ #H destruct
-    lapply (frees_inv_lref … H1) -H1 #Hg1
-    lapply (frees_inv_sort … H2) -H2 #Hg2 /2 width=1 by sle_isid_sn/  
+axiom pippo: ∀RN,RP,L1,i. ⬇*[Ⓕ, 𝐔❴i❵] L1 ≡ ⋆ → 
+             ∀f,L2. L1 ⦻*[RN, RP, f] L2 →
+             ⬇*[Ⓕ, 𝐔❴i❵] L2 ≡ ⋆.
+(*
+#RN #RP #L1 #i #H1 #f #L2 #H2
+lapply (lexs_co_dropable_sn … H1 … H2) // -HL1 -H2
+*)
 
+lemma coafter_uni_sn: ∀i,f. 𝐔❴i❵ ~⊚ f ≡ ↑*[i] f.
+#i elim i -i /2 width=5 by coafter_isid_sn, coafter_next/
+qed.
 
+lemma sle_pushs: ∀f1,f2. f1 ⊆ f2 → ∀i. ↑*[i] f1 ⊆ ↑*[i] f2.
+#f1 #f2 #Hf12 #i elim i -i /2 width=5 by sle_push/
+qed.
 
-| #l #HG #HL #HU #U2 #H0 #L2 #_ #g1 #H1 #g2 #H2 -IH -G0 -L0 -U0
-  lapply (cpx_inv_gref1 … H0) -H0 #H destruct
-  /3 width=3 by frees_inv_gref, sle_isid_sn/
-  
-| #j #HG #HL #HU #U2 #H1 #L2 #HL12 #i #H2 elim (cpx_inv_lref1 … H1) -H1
-  [ #H destruct elim (frees_inv_lref … H2) -H2 //
-    * #I #K2 #W2 #Hj #Hji #HLK2 #HW2
-    elim (lpx_drop_trans_O1 … HL12 … HLK2) -HL12 #Y #HLK1 #H
-    elim (lpx_inv_pair2 … H) -H #K1 #W1 #HK12 #HW12 #H destruct
-    /4 width=11 by frees_lref_be, fqup_lref/
-  | * #I #K1 #W1 #W0 #HLK1 #HW10 #HW0U2
-    lapply (drop_fwd_drop2 … HLK1) #H0
-    elim (lpx_drop_conf … H0 … HL12) -H0 -HL12 #K2 #HK12 #HLK2
-    elim (ylt_split i (j+1)) >yplus_SO2 #Hji
-    [ -IH elim (frees_inv_lift_be … H2 … HLK2 … HW0U2) /2 width=1 by ylt_fwd_succ2/
-    | lapply (frees_inv_lift_ge … H2 … HLK2 … HW0U2 ?) -L2 -U2 // destruct
-      /4 width=11 by frees_lref_be, fqup_lref, yle_succ1_inj/
-    ]
-  ]
-| -IH #p #HG #HL #HU #U2 #H1 >(cpx_inv_gref1 … H1) -H1 destruct
-   #L2 #_ #i #H2 elim (frees_inv_gref … H2)
-| #a #I #W1 #U1 #HG #HL #HU #X #HX #L2 #HL12 #i #Hi destruct
-  elim (cpx_inv_bind1 … HX) -HX *
-  [ #W2 #U2 #HW12 #HU12 #H destruct
-    elim (frees_inv_bind_O … Hi) -Hi
-    /4 width=7 by frees_bind_dx_O, frees_bind_sn, lpx_pair/
-  | #U2 #HU12 #HXU2 #H1 #H2 destruct
-    lapply (frees_lift_ge … Hi (L2.ⓓW1) (Ⓕ) … HXU2 ?)
-    /4 width=7 by frees_bind_dx_O, lpx_pair, drop_drop/
-  ]
-| #I #W1 #X1 #HG #HL #HU #X2 #HX2 #L2 #HL12 #i #Hi destruct
-  elim (cpx_inv_flat1 … HX2) -HX2 *
-  [ #W2 #U2 #HW12 #HU12 #H destruct
-    elim (frees_inv_flat … Hi) -Hi /3 width=7 by frees_flat_dx, frees_flat_sn/
-  | #HU12 #H destruct /3 width=7 by frees_flat_dx/
-  | #HW12 #H destruct /3 width=7 by frees_flat_sn/
-  | #b #W2 #V1 #V2 #U1 #U2 #HW12 #HV12 #HU12 #H1 #H2 #H3 destruct
-    elim (frees_inv_bind … Hi) -Hi #Hi
-    [ elim (frees_inv_flat … Hi) -Hi
-      /4 width=7 by frees_flat_dx, frees_flat_sn, frees_bind_sn/
-    | lapply (lreq_frees_trans … Hi (L2.ⓛV2) ?) /2 width=1 by lreq_succ/ -Hi #HU2
-      lapply (frees_weak … HU2 0 ?) -HU2
-      /5 width=7 by frees_bind_dx_O, frees_flat_dx, lpx_pair/
+axiom monotonic_sle_sor: ∀f1,g1. f1 ⊆ g1 → ∀f2,g2. f2 ⊆ g2 →
+                         ∀f. f1 ⋓ f2 ≡ f → ∀g. g1 ⋓ g2 ≡ g → f ⊆ g.
+
+axiom sle_tl: ∀f1,f2. f1 ⊆ f2 → ⫱f1 ⊆ ⫱f2.
+
+axiom frees_inv_lifts_SO: ∀b,f,L,U. L ⊢ 𝐅*⦃U⦄ ≡ f →
+                          ∀K. ⬇*[b, 𝐔❴1❵] L ≡ K → ∀T. ⬆*[1] T ≡ U →
+                          K ⊢ 𝐅*⦃T⦄ ≡ ⫱f.
+
+(* Basic_2A1: was: lpx_cpx_frees_trans *)
+lemma cpx_frees_trans_lexs: ∀h,G,L1,T1,f1. L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 →
+                            ∀L2. L1 ⦻*[cpx h G, cfull, f1] L2 →
+                            ∀T2. ⦃G, L1⦄ ⊢ T1 ⬈[h] T2 →
+                            ∃∃f2. L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 & f2 ⊆ f1.
+#h #G #L1 #T1 @(fqup_wf_ind_eq … G L1 T1) -G -L1 -T1
+#G0 #L0 #U0 #IH #G #L1 * *
+[ -IH #s #HG #HL #HU #g1 #H1 #L2 #_ #U2 #H0 destruct
+  lapply (frees_inv_sort … H1) -H1 #Hg1
+  elim (cpx_inv_sort1 … H0) -H0 #H destruct
+  /3 width=3 by frees_sort_gen, sle_refl, ex2_intro/
+| #i #HG #HL #HU #g1 #H1 #L2 #H2 #U2 #H0 destruct
+  elim (frees_inv_lref_drops … H1) -H1 *
+  [ -IH #HL1 #Hg1
+    elim (cpx_inv_lref1_drops … H0) -H0
+    [ #H destruct lapply (pippo … HL1 … H2) -HL1 -H2
+      /3 width=3 by frees_lref_atom, sle_refl, ex2_intro/
+    | * -H2 -Hg1 #I #K1 #V1 #V2 #HLK1
+      lapply (drops_TF … HLK1) -HLK1 #HLK1
+      lapply (drops_mono … HLK1 … HL1) -L1 #H destruct
     ]
-  | #b #W2 #W0 #V1 #V2 #U1 #U2 #HW12 #HW20 #HV12 #HU12 #H1 #H2 #H3 destruct
-    elim (frees_inv_bind_O … Hi) -Hi #Hi
-    [ /4 width=7 by frees_flat_dx, frees_bind_sn/
-    | elim (frees_inv_flat … Hi) -Hi
-      [ #HW0 lapply (frees_inv_lift_ge … HW0 L2 (Ⓕ) … HW20 ?) -W0
-        /3 width=7 by frees_flat_sn, drop_drop/
-      | /5 width=7 by frees_bind_dx_O, frees_flat_dx, lpx_pair/
-      ]
+  | #f1 #I #K1 #V1 #Hf1 #HLK1 #H destruct
+    elim (cpx_inv_lref1_drops … H0) -H0
+    [ #H destruct
+      elim (lexs_drops_conf_next … H2 … HLK1) -H2 [ |*: // ] #K2 #V2 #HLK2 #HK12 #HV12
+      elim (IH … Hf1 … HK12 … HV12) /2 width=2 by fqup_lref/ -L1 -K1 -V1 #f2 #Hf2 #Hf21
+      /4 width=7 by frees_lref_pushs, frees_lref_pair, drops_refl, sle_next, ex2_intro, sle_pushs/
+    | * #J #Y #X #V2 #H #HV12 #HVU2
+      lapply (drops_mono … H … HLK1) -H #H destruct
+      elim (lexs_drops_conf_next … H2 … HLK1) -H2 [ |*: // ] #K2 #V0 #HLK2 #HK12 #_
+      lapply (drops_isuni_fwd_drop2 … HLK2) // -V0 #HLK2
+      elim (IH … Hf1 … HK12 … HV12) /2 width=2 by fqup_lref/ -I -L1 -K1 -V1 #f2 #Hf2 #Hf21
+      lapply (frees_lifts … Hf2 … HLK2 … HVU2 ??) /4 width=7 by sle_weak, ex2_intro, sle_pushs/
     ]
   ]
-]
-qed-.
+| -IH #l #HG #HL #HU #g1 #H1 #L2 #_ #U2 #H0 destruct
+  lapply (frees_inv_gref … H1) -H1 #Hg1
+  lapply (cpx_inv_gref1 … H0) -H0 #H destruct
+  /3 width=3 by frees_gref_gen, sle_refl, ex2_intro/
+| #p #I #V1 #T1 #HG #HL #HU #g1 #H1 #L2 #H2 #U2 #H0 destruct
+  elim (frees_inv_bind … H1) -H1 #gV1 #gT1 #HgV1 #HgT1 #Hg1
+  elim (cpx_inv_bind1 … H0) -H0 *
+  [ #V2 #T2 #HV12 #HT12 #H destruct
+    lapply (sle_lexs_trans … H2 gV1 ?) /2 width=2 by sor_inv_sle_sn/ #HL12V
+    lapply (sle_lexs_trans … H2 (⫱gT1) ?) /2 width=2 by sor_inv_sle_dx/ -H2 #HL12T
+    lapply (lexs_inv_tl … I … HL12T … HV12 ?) // -HL12T #HL12T
+    elim (IH … HgV1 … HL12V … HV12) // -HgV1 -HL12V -HV12 #gV2 #HgV2 #HgV21
+    elim (IH … HgT1 … HL12T … HT12) // -IH -HgT1 -HL12T -HT12 #gT2 #HgT2 #HgT21
+    elim (sor_isfin_ex gV2 (⫱gT2)) /3 width=3 by frees_fwd_isfin, isfin_tl/
+    /4 width=10 by frees_bind, monotonic_sle_sor, sle_tl, ex2_intro/
+  | #T2 #HT12 #HUT2 #H0 #H1 destruct -HgV1
+    lapply (sle_lexs_trans … H2 (⫱gT1) ?) /2 width=2 by sor_inv_sle_dx/ -H2 #HL12T
+    lapply (lexs_inv_tl … Abbr … V1 V1 HL12T ??) // -HL12T #HL12T
+    elim (IH … HgT1 … HL12T … HT12) // -IH -HgT1 -HL12T -HT12 #gT2 #HgT2 #HgT21
+    lapply (frees_inv_lifts_SO (Ⓣ) … HgT2 … L2 … HUT2) [ /3 width=1 by drops_refl, drops_drop/ ]
 
 lemma cpx_frees_trans: ∀h,o,G. frees_trans (cpx h o G).
 /2 width=8 by lpx_cpx_frees_trans/ qed-.
index c82690309a7b312ebb4e44ce193c4fac0adf41a3..d89aaaaae7a59b3c000ad58fddc29f5b5c8b06c2 100644 (file)
@@ -12,6 +12,7 @@
 (*                                                                        *)
 (**************************************************************************)
 
+include "basic_2/relocation/drops.ma".
 include "basic_2/s_computation/fqup_weight.ma".
 include "basic_2/static/frees.ma".
 
@@ -44,3 +45,59 @@ lemma frees_total: ∀L,T. ∃f. L ⊢ 𝐅*⦃T⦄ ≡ f.
   ]
 ]
 qed-.
+
+(* Properties with plus-iterated supclosure *********************************)
+
+lemma frees_drops_next: ∀f1,L1,T1. L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 →
+                        ∀I2,L2,V2,n. ⬇*[n] L1 ≡ L2.ⓑ{I2}V2 →
+                        ∀g1. ⫯g1 = ⫱*[n] f1 →
+                        ∃∃g2. L2 ⊢ 𝐅*⦃V2⦄ ≡ g2 & g2 ⊆ g1.
+#f1 #L1 #T1 #H elim H -f1 -L1 -T1
+[ #f1 #I1 #Hf1 #I2 #L2 #V2 #n #HL12
+  elim (drops_inv_atom1 … HL12) -HL12 #H destruct
+| #f1 #I1 #L1 #V1 #s #_ #IH #I2 #L2 #V2 *
+  [ -IH #_ #g1 #Hgf1 elim (discr_next_push … Hgf1)
+  | #n #HL12 lapply (drops_inv_drop1 … HL12) -HL12
+    #HL12 #g1 <tls_xn #Hgf1 elim (IH … HL12 … Hgf1) -IH -HL12 -Hgf1
+    /2 width=3 by ex2_intro/
+  ]
+| #f1 #I1 #L1 #V1 #Hf1 #IH #I2 #L2 #V2 *
+  [ -IH #HL12 lapply (drops_fwd_isid … HL12 ?) -HL12 //
+    #H destruct #g1 #Hgf1 >(injective_next … Hgf1) -g1
+    /2 width=3 by sle_refl, ex2_intro/
+  | -Hf1 #n #HL12 lapply (drops_inv_drop1 … HL12) -HL12
+    #HL12 #g1 <tls_xn <tl_next_rew #Hgf1 elim (IH … HL12 … Hgf1) -IH -HL12 -Hgf1
+    /2 width=3 by ex2_intro/
+  ]
+| #f1 #I1 #L1 #V1 #i #_ #IH #I2 #L2 #V2 *
+  [ -IH #_ #g1 #Hgf1 elim (discr_next_push … Hgf1)
+  | #n #HL12 lapply (drops_inv_drop1 … HL12) -HL12
+    #HL12 #g1 <tls_xn #Hgf1 elim (IH … HL12 … Hgf1) -IH -HL12 -Hgf1
+    /2 width=3 by ex2_intro/
+  ]
+| #f1 #I1 #L1 #V1 #l #_ #IH #I2 #L2 #V2 *
+  [ -IH #_ #g1 #Hgf1 elim (discr_next_push … Hgf1)
+  | #n #HL12 lapply (drops_inv_drop1 … HL12) -HL12
+    #HL12 #g1 <tls_xn #Hgf1 elim (IH … HL12 … Hgf1) -IH -HL12 -Hgf1
+    /2 width=3 by ex2_intro/
+  ]
+| #fV1 #fT1 #f1 #p #I1 #L1 #V1 #T1 #_ #_ #Hf1 #IHV1 #IHT1 #I2 #L2 #V2 #n #HL12 #g1 #Hgf1
+  lapply (sor_tls … Hf1 n) -Hf1 <Hgf1 -Hgf1 #Hf1
+  elim (sor_xxn_tl … Hf1) [1,2: * |*: // ] -Hf1
+  #gV1 #gT1 #Hg1
+  [ -IHT1 #H1 #_ elim (IHV1 … HL12 … H1) -IHV1 -HL12 -H1
+    /3 width=6 by sor_sle_sn, ex2_intro/
+  | -IHV1 #_ >tls_xn #H2 elim (IHT1 … H2) -IHT1 -H2
+    /3 width=6 by drops_drop, sor_sle_dx, ex2_intro/
+  ]
+| #fV1 #fT1 #f1 #I1 #L1 #V1 #T1 #_ #_ #Hf1 #IHV1 #IHT1 #I2 #L2 #V2 #n #HL12 #g1 #Hgf1
+  lapply (sor_tls … Hf1 n) -Hf1 <Hgf1 -Hgf1 #Hf1
+  elim (sor_xxn_tl … Hf1) [1,2: * |*: // ] -Hf1
+  #gV1 #gT1 #Hg1
+  [ -IHT1 #H1 #_ elim (IHV1 … HL12 … H1) -IHV1 -HL12 -H1
+    /3 width=6 by sor_sle_sn, ex2_intro/
+  | -IHV1 #_ #H2 elim (IHT1 … HL12 … H2) -IHT1 -HL12 -H2
+    /3 width=6 by sor_sle_dx, ex2_intro/
+  ]
+]
+qed-.
diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/lfxs_main.ma b/matita/matita/contribs/lambdadelta/basic_2/static/lfxs_main.ma
new file mode 100644 (file)
index 0000000..3d6a265
--- /dev/null
@@ -0,0 +1,50 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+include "basic_2/static/lfxs_lfxs.ma".
+include "basic_2/static/frees_fqup.ma".
+include "basic_2/static/frees_frees.ma".
+
+(* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
+
+axiom frees_lexs_conf_sle: ∀RN,RP,f1,L1,T. L1 ⊢ 𝐅*⦃T⦄ ≡ f1 →
+                           ∀L2. L1 ⦻*[RN, RP, f1] L2 →
+                           ∃∃f2. L2 ⊢ 𝐅*⦃T⦄ ≡ f2 & f2 ⊆ f1.
+
+theorem lfxs_conf: ∀R. R_confluent_lfxs R R R R →
+                   ∀T. confluent … (lfxs R T).
+#R #H1R #T #L0 #L1 * #f1 #Hf1 #HL01 #L2 * #f #Hf #HL02
+lapply (frees_mono … Hf1 … Hf) -Hf1 #Hf12
+lapply (lexs_eq_repl_back … HL01 … Hf12) -f1 #HL01
+elim (lexs_conf … HL01 … HL02) /2 width=3 by ex2_intro/ [ | -HL01 -HL02 ]
+[ #L #HL1 #HL2
+  elim (frees_lexs_conf_sle … Hf … HL01) -HL01 #f1 #Hf1 #H1
+  elim (frees_lexs_conf_sle … Hf … HL02) -HL02 #f2 #Hf2 #H2
+  lapply (sle_lexs_trans … HL1 … H1) // -HL1 -H1 #HL1
+  lapply (sle_lexs_trans … HL2 … H2) // -HL2 -H2 #HL2
+  /3 width=5 by ex2_intro/
+| #g #I #K0 #V0 #n #HLK0 #Hgf #V1 #HV01 #V2 #HV02 #K1 #HK01 #K2 #HK02
+  elim (frees_drops_next … Hf … HLK0 … Hgf) -Hf -HLK0 -Hgf #g0 #Hg0 #H0
+  lapply (sle_lexs_trans … HK01 … H0) // -HK01 #HK01
+  lapply (sle_lexs_trans … HK02 … H0) // -HK02 #HK02
+  elim (H1R … HV01 … HV02 K1 … K2) /2 width=3 by ex2_intro/
+]
+qed-.
+
+(*
+lemma pippo: ∀R1,R2,RP1,RP2. R_confluent_lfxs R1 R2 RP1 RP2 →
+             lexs_confluent R1 R2 RP1 cfull RP2 cfull.
+#R1 #R2 #RP1 #RP2 #HR #f #L0 #T0 #T1 #HT01 #T2 #HT02 #L1 #HL01 #L2
+#HL02
+*)
\ No newline at end of file
index 640f9e265b41726ace787548be926c48227700f9..839426b9acb8ede8d994f16e6a6dff43338631d6 100644 (file)
@@ -279,6 +279,13 @@ lemma sor_tl: ∀f1,f2,f. f1 ⋓ f2 ≡ f → ⫱f1 ⋓ ⫱f2 ≡ ⫱f.
 ] -Hf #g #Hg #H destruct //
 qed.
 
+lemma sor_xxn_tl: ∀g1,g2,g. g1 ⋓ g2 ≡ g → ∀f. ⫯f = g →
+                  (∃∃f1,f2. f1 ⋓ f2 ≡ f & ⫯f1 = g1 & ⫱g2 = f2) ∨
+                  (∃∃f1,f2. f1 ⋓ f2 ≡ f & ⫱g1 = f1 & ⫯f2 = g2).
+#g1 #g2 #g #H #f #H0 elim (sor_inv_xxn … H … H0) -H -H0 *
+/3 width=5 by ex3_2_intro, or_introl, or_intror/
+qed-.
+
 (* Properties with iterated tail ********************************************)
 
 lemma sor_tls: ∀f1,f2,f. f1 ⋓ f2 ≡ f →