| cons p2 l2' ⇒
let 〈c1,b1〉 ≝ p1 in let 〈c2,b2〉 ≝ p2 in
match c2 with
- [ null ⇒ p1 :: merge_config l1' l2'
- | _ ⇒ p2 :: merge_config l1' l2' ] ] ].
+ [ null ⇒ p1
+ | _ ⇒ p2 ] :: merge_config l1' l2' ] ].
+
+lemma merge_config_append :
+ ∀l1,l2,l3,l4.|l1| = |l2| →
+ merge_config (l1@l3) (l2@l4) = merge_config l1 l2@merge_config l3 l4.
+#l1 #l2 #l3 #l4 #Hlen @(list_ind2 … Hlen)
+[normalize //
+| #t1 #t2 * #c1 #b1 * #c2 #b2 #IH whd in ⊢ (??%%); >IH % ]
+qed.
definition R_copy0 ≝ λt1,t2.
∀ls,c,c0,rs,l1,l3,l4.
t2 = midtape ? (reverse ? l1'@l3@〈grid,true〉::
merge_config l4' (reverse ? l1')@ls)
〈comma,true〉 rs).
+
+lemma inj_append_singleton_l1 :
+ ∀A.∀l1,l2:list A.∀a1,a2.l1@[a1] = l2@[a2] → l1 = l2.
+#A #l1 #l2 #a1 #a2 #H lapply (eq_f … (reverse ?) … H)
+>reverse_append >reverse_append normalize #H1 destruct
+lapply (eq_f … (reverse ?) … e0) >reverse_reverse >reverse_reverse //
+qed.
+
+lemma inj_append_singleton_l2 :
+ ∀A.∀l1,l2:list A.∀a1,a2.l1@[a1] = l2@[a2] → a1 = a2.
+#A #l1 #l2 #a1 #a2 #H lapply (eq_f … (reverse ?) … H)
+>reverse_append >reverse_append normalize #H1 destruct %
+qed.
+
+lemma length_reverse : ∀A,l.|reverse A l| = |l|.
+#A #l elim l //
+#a0 #l0 #IH normalize >rev_append_def >length_append >IH normalize //
+qed.
lemma wsem_copy0 : WRealize ? copy0 R_copy0.
#intape #k #outc #Hloop
#Hl1 #Hl1bits #l4' #bg #Hl4 #Hl4bits %2
cases (Htc … Htb) -Htc #Hcbitnull #Htc
% [ % #Hc' >Hc' in Hcbitnull; normalize #Hfalse destruct (Hfalse) ]
- cut (|l1| = |reverse ? l4|) [@daemon] #Hlen1
+ cut (|l1| = |reverse ? l4|) [//] #Hlen1
@(list_cases_2 … Hlen1)
- [ #Hl1nil @False_ind >Hl1nil in Hl1; cases l1' normalize
+ [ (* case l1 = [] is discriminated because l1 contains at least comma *)
+ #Hl1nil @False_ind >Hl1nil in Hl1; cases l1' normalize
[ #Hl1 destruct normalize in Hcbitnull; destruct (Hcbitnull)
| #p0 #l0 normalize #Hfalse destruct (Hfalse) cases l0 in e0;
[ normalize #Hfalse1 destruct (Hfalse1)
| #p0' #l0' normalize #Hfalse1 destruct (Hfalse1) ] ]
- | * #a #ba * #a0 #ba0 #l1'' #l4'' #Hl1cons #Hl4cons
+ | (* case c::l1 = c::a::l1'' *)
+ * #a #ba * #a0 #ba0 #l1'' #l4'' #Hl1cons #Hl4cons
lapply (eq_f ?? (reverse ?) ?? Hl4cons) >reverse_reverse >reverse_cons -Hl4cons #Hl4cons
- cut (ba = false) [ @daemon ] #Hba
- cut (ba0 = false) [ @daemon ] #Hba0
+ cut (ba = false)
+ [ >Hl1cons in Hl1nomarks; #Hl1nomarks lapply (Hl1nomarks 〈a,ba〉 ?)
+ [ @memb_hd | normalize // ] ] #Hba
+ cut (ba0 = false)
+ [ >Hl4cons in Hl3l4nomarks; #Hl3l4nomarks lapply (Hl3l4nomarks 〈a0,ba0〉 ?)
+ [ @memb_append_l2 @memb_append_l2 @memb_hd | normalize // ] ] #Hba0
>Hba0 in Hl4cons; >Hba in Hl1cons; -Hba0 -Hba #Hl1cons #Hl4cons
>Hl4cons in Htc; >Hl1cons #Htc
lapply (Htc a (l3@reverse ? l4'') c0 a0 ls (l1''@rs) ? (refl ??) ?)
[ #x #Hx @Hl3l4nomarks >Hl4cons <associative_append
@memb_append_l1 @Hx
| >associative_append >associative_append %
- | -Htc *
+ | -Htc
+ cut (∃la.l1' = 〈c,false〉::la)
+ [ >Hl1cons in Hl1; cases l1'
+ [normalize #Hfalse destruct (Hfalse)
+ | #p #la normalize #Hla destruct (Hla) @(ex_intro ?? la) % ] ]
+ * #la #Hla
+ cut (∃lb.l4' = lb@[〈c0,false〉])
+ [ >Hl4cons in Hl4;
+ @(list_elim_left … l4')
+ [ #Heq lapply (eq_f … (length ?) … Heq)
+ >length_append >length_append
+ >commutative_plus normalize >commutative_plus normalize
+ #Hfalse destruct
+ | #a1 #tl #_ #Heq
+ >(inj_append_singleton_l2 ? (reverse ? l4''@[〈a0,false〉]) (〈grid,bg〉::tl) 〈c0,false〉 a1 Heq)
+ @ex_intro //
+ ] ] * #lb #Hlb
+ cut (|lb| = |reverse ? la|)
+ [ >Hla in Hl1; >Hlb in Hl4; #Hl4 #Hl1
+ >(?:l1 = la@[〈comma,bv〉]) in Hlen;
+ [|normalize in Hl1; destruct (Hl1) %]
+ >(?:l4 = 〈grid,bg〉::lb)
+ [|@(inj_append_singleton_l1 ?? (〈grid,bg〉::lb) ?? Hl4) ]
+ >length_append >commutative_plus >length_reverse
+ normalize #Hlalb destruct (Hlalb) //
+ ] #Hlen2
+ *
+ (* by hyp on the first iteration step,
+ we consider whether c = bit x or c = null *)
+ (* c = bit x *)
[ * #x * #Hx #Htc
lapply (Hind (〈bit x,false〉::ls) a a0 rs l1''
(〈bit x,false〉::l3) (reverse ? l4'') ????)
| #x0 #Hx0 @Hl1nomarks >Hl1cons @memb_cons //
| >Htc >associative_append %
| -Hind
- cut (∃la.l1' = 〈c,false〉::la)
- [ >Hl1cons in Hl1; cases l1'
- [normalize #Hfalse destruct (Hfalse)
- | #p #la normalize #Hla destruct (Hla) @(ex_intro ?? la) % ] ]
- * #la #Hla
- cut (∃lb.l4' = lb@[〈c0,false〉])
- [ >Hl4cons in Hl4;
- @(list_elim_left … l4')
- (* si usa l'iniettività del "cons destro"
- [ normalize
- | #p #lb
- cases l4'
- [normalize
- | #p #lb *)
-
- @(list_elim_left … l4')
- <Hl1cons <Hl4cons #Hind lapply (Hind ?? Hl1 ??? Hl4 ?)
+ <Hl1cons <Hl4cons #Hind lapply (Hind la bv ?? lb bg ??)
+ [ #x0 #Hx0 @Hl4bits >Hlb @memb_append_l1 //
+ | >Hlb in Hl4; normalize in ⊢ (%→?); #Hl4
+ @(inj_append_singleton_l1 ? l4 (〈grid,bg〉::lb) … Hl4)
+ | #x0 #Hx0 @Hl1bits >Hla @memb_cons //
+ | >Hla in Hl1; normalize in ⊢ (%→?); #Hl1
+ destruct (Hl1) // ] -Hind
+ (* by IH, we proceed by cases, whether a = comma
+ (consequently several lists = []) or not *)
+ *
+ [ * #Ha #Houtc1 >Hl1cons in Hl1; >Hla
+ >Houtc1 >Htc #Hl1
+ >Hl4cons in Hl4; >Hlb #Hl4
+ cut (la = [] ∧ lb = [] ∧ l1'' = [] ∧ l4'' = [])
+ [@daemon] * * * #Hla1 #Hlb1 #Hl1nil #Hl4nil
+ >Hla1 >Hlb1 >Hl1nil >Hl4nil >Hx
+ cut (a0 = grid) [ @daemon ] #Ha0 <Ha <Ha0
+ normalize in ⊢ (??(??%?%)(??%?%)); >associative_append %
+ | * #Ha #Houtc1 >Houtc1 @eq_f3 //
+ >Hla >reverse_cons >associative_append @eq_f
+ >Hx whd in ⊢ (??%?); @eq_f whd in ⊢ (???%); @eq_f @eq_f
+ >Hlb >append_cons @eq_f2 // >(merge_config_append … Hlen2) %
+ ]
+ ]
+ | (* c = null *)
+ * #Hc #Htc
+ lapply (Hind (〈c0,false〉::ls) a a0 rs l1'' (〈null,false〉::l3) (reverse ? l4'') ????)
+ [ >Hl1cons in Hlen; >Hl4cons >length_append >commutative_plus normalize
+ #Hlen destruct (Hlen) @e0
+ | #x0 #Hx0 cases (memb_append STape ? [〈null,false〉] (l3@reverse ? l4'') … Hx0) -Hx0 #Hx0
+ [ >(memb_single … Hx0) %
+ | @Hl3l4nomarks cases (memb_append … Hx0) -Hx0 #Hx0
+ [ @memb_append_l1 //
+ | @memb_append_l2 >Hl4cons @memb_append_l1 // ]
+ ]
+ | >Hl1cons #x' #Hx0 @Hl1nomarks >Hl1cons @memb_cons //
+ | >Htc @eq_f3 // >associative_append % ] -Hind <Hl1cons <Hl4cons #Hind
+ lapply (Hind la bv ?? lb bg ??)
+ [ #x0 #Hx0 @Hl4bits >Hlb @memb_append_l1 //
+ | >Hlb in Hl4; normalize in ⊢ (%→?); #Hl4
+ @(inj_append_singleton_l1 ? l4 (〈grid,bg〉::lb) … Hl4)
+ | #x0 #Hx0 @Hl1bits >Hla @memb_cons //
+ | >Hla in Hl1; normalize in ⊢ (%→?); #Hl1
+ destruct (Hl1) // ] -Hind *
+ (* by IH, we proceed by cases, whether a = comma
+ (consequently several lists = []) or not *)
+ [ * #Ha #Houtc1 >Hl1cons in Hl1; >Hla
+ >Houtc1 >Htc #Hl1
+ >Hl4cons in Hl4; >Hlb #Hl4
+ cut (la = [] ∧ lb = [] ∧ l1'' = [] ∧ l4'' = [])
+ [@daemon] * * * #Hla1 #Hlb1 #Hl1nil #Hl4nil
+ >Hla1 >Hlb1 >Hl1nil >Hl4nil >Hc
+ cut (a0 = grid) [ @daemon ] #Ha0 <Ha <Ha0
+ normalize in ⊢ (??(??%?%)(??%?%)); >associative_append %
+ | * #Ha #Houtc1 >Houtc1 @eq_f3 //
+ >Hla >reverse_cons >associative_append @eq_f
+ >Hc whd in ⊢ (??%?); @eq_f whd in ⊢ (???%); @eq_f @eq_f
+ >Hlb >append_cons @eq_f2 // >(merge_config_append … Hlen2) %
+ ]
+ ]
+]]]
+qed.
definition copy
≝