]> matita.cs.unibo.it Git - helm.git/commitdiff
update in basic_2 + new tool "roles"
authorFerruccio Guidi <fguidi@maelstrom.helm.cs.unibo.it>
Sat, 25 Jan 2020 21:36:39 +0000 (22:36 +0100)
committerFerruccio Guidi <fguidi@maelstrom.helm.cs.unibo.it>
Sat, 25 Jan 2020 21:36:39 +0000 (22:36 +0100)
+ cpg_drops.ma: a proof updated
+ roles: new tool for managing names (-r -s -t -w)
+ names.txt: updated
+ probe: output URI syntax updated

22 files changed:
matita/components/binaries/probe/engine.ml
matita/matita/contribs/lambdadelta/basic_1A/names.txt
matita/matita/contribs/lambdadelta/basic_2/names.txt
matita/matita/contribs/lambdadelta/basic_2/rt_transition/cpg_drops.ma
matita/matita/contribs/lambdadelta/basic_2A/names.txt
matita/matita/contribs/lambdadelta/bin/roles/Makefile [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/roles.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/roles.mli [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesEngine.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesEngine.mli [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesGlobal.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesGlobal.mli [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesInput.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesInput.mli [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesLexer.mll [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesOutput.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesOutput.mli [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesParser.mly [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesTypes.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesUtils.ml [new file with mode: 0644]
matita/matita/contribs/lambdadelta/bin/roles/rolesUtils.mli [new file with mode: 0644]
matita/matita/contribs/lambdadelta/static_2/names.txt

index bd452674e6732069f00941dffde3d76311eb96ae..8a8a74ac545b644aedb95915d0271b222d764150 100644 (file)
@@ -34,7 +34,7 @@ let out_int i = P.printf "%u\n" i
 let out_length uris = out_int (US.cardinal uris)
 
 let out_uris uris =
-   let map uri = P.printf "%s\n" (U.string_of_uri uri) in
+   let map uri = P.printf "%S\n" (U.string_of_uri uri) in
    US.iter map uris
 
 let is_registry str =
index d85e0594506902828726b3ca9c3f05c21dbdf4b7..91031610a0dea1c48cca9161ea33c7d65f3c63e4 100644 (file)
-A
-Abbr
-Abst
-abst_dec
-AHead
-ahead_inj_snd
-aplus
-aplus_ahead_simpl
-aplus_asort_le_simpl
-aplus_asort_O_simpl
-aplus_asort_simpl
-aplus_assoc
-aplus_asucc
-aplus_asucc_false
-aplus_gz_ge
-aplus_gz_le
-aplus_inj
-aplus_reg_r
-aplus_sort_O_S_simpl
-aplus_sort_S_S_simpl
-app1
-Appl
-aprem
-aprem_asucc
-aprem_gen_head_O
-aprem_gen_head_S
-aprem_gen_sort
-aprem_repl
-aprem_succ
-aprem_zero
-arity
-arity_abbr
-arity_abst
-arity_appl
-arity_appls_abbr
-arity_appls_appl
-arity_appls_bind
-arity_appls_cast
-arity_aprem
-arity_bind
-arity_cast
-arity_cimp_conf
-arity_fsubst0
-arity_gen_abst
-arity_gen_appl
-arity_gen_appls
-arity_gen_bind
-arity_gen_cast
-arity_gen_cvoid
-arity_gen_cvoid_subst0
-arity_gen_lift
-arity_gen_lref
-arity_gen_sort
-arity_head
-arity_lift
-arity_lift1
-arity_mono
-arity_nf2_inv_all
-arity_repellent
-arity_repl
-arity_sort
-arity_sred_pr2
-arity_sred_pr3
-arity_sred_wcpr0_pr0
-arity_sred_wcpr0_pr1
-arity_subst0
-ASort
-asucc
-asucc_gen_head
-asucc_gen_sort
-asucc_inj
-asucc_repl
-B
-Bind
-bind_dec_not
-binder_dec
-C
-Cast
-cbk
-CHead
-chead_ctail
-cimp
-cimp_bind
-cimp_flat_dx
-cimp_flat_sx
-cimp_getl_conf
-cle
-clear
-clear_bind
-clear_cle
-clear_clear
-clear_ctail
-clear_flat
-clear_gen_all
-clear_gen_bind
-clear_gen_flat
-clear_gen_flat_r
-clear_gen_sort
-clear_getl_trans
-clear_mono
-clear_pc3_trans
-clear_pr2_trans
-clear_pr3_trans
-clear_trans
-clear_wf3_trans
-cle_flt_trans
-cle_head
-clen
-cle_r
-cle_trans_head
-clt
-clt_cong
-clt_head
-clt_thead
-clt_wf_ind
-clt_wf__q_ind
-cnt
-cnt_head
-cnt_lift
-cnt_sort
-CSort
-csuba
-csuba_abst
-csuba_arity
-csuba_arity_rev
-csuba_clear_conf
-csuba_clear_trans
-csuba_drop_abbr
-csuba_drop_abbr_rev
-csuba_drop_abst
-csuba_drop_abst_rev
-csuba_gen_abbr
-csuba_gen_abbr_rev
-csuba_gen_abst
-csuba_gen_abst_rev
-csuba_gen_bind
-csuba_gen_bind_rev
-csuba_gen_flat
-csuba_gen_flat_rev
-csuba_gen_void
-csuba_gen_void_rev
-csuba_getl_abbr
-csuba_getl_abbr_rev
-csuba_getl_abst
-csuba_getl_abst_rev
-csuba_head
-csuba_refl
-csuba_sort
-csuba_void
-csubc
-csubc_abst
-csubc_arity_conf
-csubc_arity_trans
-csubc_clear_conf
-csubc_csuba
-csubc_drop1_conf_rev
-csubc_drop_conf_O
-csubc_drop_conf_rev
-csubc_gen_head_l
-csubc_gen_head_r
-csubc_gen_sort_l
-csubc_gen_sort_r
-csubc_getl_conf
-csubc_head
-csubc_refl
-csubc_sort
-csubc_void
-csubst0
-csubst0_both
-csubst0_both_bind
-csubst0_clear_O
-csubst0_clear_O_back
-csubst0_clear_S
-csubst0_clear_trans
-csubst0_drop_eq
-csubst0_drop_eq_back
-csubst0_drop_gt
-csubst0_drop_gt_back
-csubst0_drop_lt
-csubst0_drop_lt_back
-csubst0_fst
-csubst0_fst_bind
-csubst0_gen_head
-csubst0_gen_S_bind_2
-csubst0_gen_sort
-csubst0_getl_ge
-csubst0_getl_ge_back
-csubst0_getl_lt
-csubst0_getl_lt_back
-csubst0_snd
-csubst0_snd_bind
-csubst1
-csubst1_bind
-csubst1_flat
-csubst1_gen_head
-csubst1_getl_ge
-csubst1_getl_ge_back
-csubst1_getl_lt
-csubst1_head
-csubst1_refl
-csubst1_sing
-csubt
-csubt_abst
-csubt_clear_conf
-csubt_csuba
-csubt_drop_abbr
-csubt_drop_abst
-csubt_drop_flat
-csubt_gen_abbr
-csubt_gen_abst
-csubt_gen_bind
-csubt_gen_flat
-csubt_getl_abbr
-csubt_getl_abst
-csubt_head
-csubt_pc3
-csubt_pr2
-csubt_refl
-csubt_sort
-csubt_ty3
-csubt_ty3_ld
-csubt_void
-csubv
-csubv_bind
-csubv_bind_same
-csubv_clear_conf
-csubv_clear_conf_void
-csubv_drop_conf
-csubv_flat
-csubv_getl_conf
-csubv_getl_conf_void
-csubv_refl
-csubv_sort
-csubv_void
-CTail
-c_tail_ind
-cweight
-dnf_dec
-dnf_dec2
-drop
-drop1
-drop1_cons
-drop1_cons_tail
-drop1_csubc_trans
-drop1_gen_pcons
-drop1_gen_pnil
-drop1_getl_trans
-drop1_nil
-drop1_skip_bind
-drop1_trans
-drop_clear
-drop_clear_O
-drop_clear_S
-drop_conf_ge
-drop_conf_lt
-drop_conf_rev
-drop_csubc_trans
-drop_ctail
-drop_drop
-drop_gen_drop
-drop_gen_refl
-drop_gen_skip_l
-drop_gen_skip_r
-drop_gen_sort
-drop_getl_trans_ge
-drop_getl_trans_le
-drop_getl_trans_lt
-drop_mono
-drop_refl
-drop_S
-drop_skip
-drop_skip_bind
-drop_skip_flat
-drop_trans_ge
-drop_trans_le
-ex1_arity
-ex1_c
-ex1__leq_sort_SS
-ex1_t
-ex1_ty3
-ex2_arity
-ex2_c
-ex2_nf2
-ex2_t
-F
-Flat
-flt
-flt_arith0
-flt_arith1
-flt_arith2
-flt_shift
-flt_thead_dx
-flt_thead_sx
-flt_trans
-flt_wf_ind
-flt_wf__q_ind
-fsubst0
-fsubst0_both
-fsubst0_fst
-fsubst0_gen_base
-fsubst0_snd
-fweight
-G
-getl
-getl_clear_bind
-getl_clear_conf
-getl_clear_trans
-getl_conf_ge_drop
-getl_conf_le
-getl_csubst1
-getl_ctail
-getl_ctail_clen
-getl_dec
-getl_drop
-getl_drop_conf_ge
-getl_drop_conf_lt
-getl_drop_conf_rev
-getl_drop_trans
-getl_flat
-getl_flt
-getl_gen_2
-getl_gen_all
-getl_gen_bind
-getl_gen_flat
-getl_gen_O
-getl_gen_S
-getl_gen_sort
-getl_gen_tail
-getl_head
-getl_intro
-getl_mono
-getl_refl
-getl_trans
-getl_wf3_trans
-gz
-iso
-iso_flats_flat_bind_false
-iso_flats_lref_bind_false
-iso_gen_head
-iso_gen_lref
-iso_gen_sort
-iso_head
-iso_lref
-iso_refl
-iso_sort
-iso_trans
-K
-leq
-leq_ahead_asucc_false
-leq_ahead_false_1
-leq_ahead_false_2
-leq_asucc
-leq_asucc_false
-leq_eq
-leq_gen_head1
-leq_gen_head2
-leq_gen_sort1
-leq_gen_sort2
-leq_head
-leq_leqz
-leq_refl
-leq_sort
-leq_sym
-leq_trans
-leqz
-leqz_head
-leqz_leq
-leqz_sort
-lift
-lift1
-lift1_bind
-lift1_cons_tail
-lift1_flat
-lift1_free
-lift1_lift1
-lift1_lref
-lift1_sort
-lift1_xhg
-lift_bind
-lift_d
-lift_flat
-lift_free
-lift_free_sym
-lift_gen_bind
-lift_gen_flat
-lift_gen_head
-lift_gen_lift
-lift_gen_lref
-lift_gen_lref_false
-lift_gen_lref_ge
-lift_gen_lref_lt
-lift_gen_sort
-lift_head
-lift_inj
-lift_lref_ge
-lift_lref_gt
-lift_lref_lt
-lift_r
-lifts
-lifts1
-lifts1_cons
-lifts1_flat
-lifts1_nil
-lifts1_xhg
-lifts_inj
-lift_sort
-lifts_tapp
-lift_tle
-lift_tlt_dx
-lift_weight
-lift_weight_add
-lift_weight_add_O
-lift_weight_map
-llt
-llt_head_dx
-llt_head_sx
-llt_repl
-llt_trans
-llt_wf_ind
-llt_wf__q_ind
-lref_map
-lweight
-lweight_repl
-minus_s_s
-mk_G
-next_plus
-next_plus_assoc
-next_plus_gz
-next_plus_lt
-next_plus_next
-nf0_dec
-nf2
-nf2_abst
-nf2_abst_shift
-nf2_appl_lref
-nf2_appls_lref
-nf2_csort_lref
-nf2_dec
-nf2_gen_abbr
-nf2_gen_abst
-nf2_gen_beta
-nf2_gen_cast
-nf2_gen_flat
-nf2_gen_lref
-nf2_gen__nf2_gen_aux
-nf2_gen_void
-nf2_iso_appls_lref
-nf2_lift
-nf2_lift1
-nf2_lref_abst
-nf2_pr3_confluence
-nf2_pr3_unfold
-nf2_sn3
-nf2_sort
-nfs2
-nfs2_tapp
-node_inh
-not_abbr_abst
-not_abbr_void
-not_abst_void
-not_void_abst
-pc1
-pc1_head
-pc1_head_1
-pc1_head_2
-pc1_pr0_r
-pc1_pr0_u
-pc1_pr0_u2
-pc1_pr0_x
-pc1_refl
-pc1_s
-pc1_t
-pc3
-pc3_abst_dec
-pc3_dec
-pc3_eta
-pc3_fsubst0
-pc3_gen_abst
-pc3_gen_abst_shift
-pc3_gen_appls_lref_abst
-pc3_gen_appls_lref_sort
-pc3_gen_appls_sort_abst
-pc3_gen_cabbr
-pc3_gen_lift
-pc3_gen_lift_abst
-pc3_gen_not_abst
-pc3_gen_sort
-pc3_gen_sort_abst
-pc3_head_1
-pc3_head_12
-pc3_head_2
-pc3_head_21
-pc3_ind_left
-pc3_ind_left__pc3_left_pc3
-pc3_ind_left__pc3_left_pr3
-pc3_ind_left__pc3_left_sym
-pc3_ind_left__pc3_left_trans
-pc3_ind_left__pc3_pc3_left
-pc3_left
-pc3_left_r
-pc3_left_ur
-pc3_left_ux
-pc3_lift
-pc3_nf2
-pc3_nf2_unfold
-pc3_pc1
-pc3_pr0_pr2_t
-pc3_pr2_fsubst0
-pc3_pr2_fsubst0_back
-pc3_pr2_pr2_t
-pc3_pr2_pr3_t
-pc3_pr2_r
-pc3_pr2_u
-pc3_pr2_u2
-pc3_pr2_x
-pc3_pr3_conf
-pc3_pr3_pc3_t
-pc3_pr3_r
-pc3_pr3_t
-pc3_pr3_x
-pc3_refl
-pc3_s
-pc3_t
-pc3_thin_dx
-pc3_wcpr0
-pc3_wcpr0__pc3_wcpr0_t_aux
-pc3_wcpr0_t
-pr0
-pr0_beta
-pr0_comp
-pr0_confluence
-pr0_confluence__pr0_cong_delta
-pr0_confluence__pr0_cong_upsilon_cong
-pr0_confluence__pr0_cong_upsilon_delta
-pr0_confluence__pr0_cong_upsilon_refl
-pr0_confluence__pr0_cong_upsilon_zeta
-pr0_confluence__pr0_delta_delta
-pr0_confluence__pr0_delta_tau
-pr0_confluence__pr0_upsilon_upsilon
-pr0_delta
-pr0_delta1
-pr0_gen_abbr
-pr0_gen_abst
-pr0_gen_appl
-pr0_gen_cast
-pr0_gen_lift
-pr0_gen_lref
-pr0_gen_sort
-pr0_gen_void
-pr0_lift
-pr0_refl
-pr0_subst0
-pr0_subst0_back
-pr0_subst0_fwd
-pr0_subst1
-pr0_subst1_back
-pr0_subst1_fwd
-pr0_tau
-pr0_upsilon
-pr0_zeta
-pr1
-pr1_comp
-pr1_confluence
-pr1_eta
-pr1_head_1
-pr1_head_2
-pr1_pr0
-pr1_refl
-pr1_sing
-pr1_strip
-pr1_t
-pr2
-pr2_cflat
-pr2_change
-pr2_confluence
-pr2_confluence__pr2_delta_delta
-pr2_confluence__pr2_free_delta
-pr2_confluence__pr2_free_free
-pr2_ctail
-pr2_delta
-pr2_delta1
-pr2_free
-pr2_gen_abbr
-pr2_gen_abst
-pr2_gen_appl
-pr2_gen_cabbr
-pr2_gen_cast
-pr2_gen_cbind
-pr2_gen_cflat
-pr2_gen_csort
-pr2_gen_ctail
-pr2_gen_lift
-pr2_gen_lref
-pr2_gen_sort
-pr2_gen_void
-pr2_head_1
-pr2_head_2
-pr2_lift
-pr2_subst1
-pr2_thin_dx
-pr3
-pr3_cflat
-pr3_confluence
-pr3_eta
-pr3_flat
-pr3_gen_abbr
-pr3_gen_abst
-pr3_gen_appl
-pr3_gen_bind
-pr3_gen_cabbr
-pr3_gen_cast
-pr3_gen_lift
-pr3_gen_lref
-pr3_gen_sort
-pr3_gen_void
-pr3_head_1
-pr3_head_12
-pr3_head_2
-pr3_head_21
-pr3_iso_appl_bind
-pr3_iso_appls_abbr
-pr3_iso_appls_appl_bind
-pr3_iso_appls_beta
-pr3_iso_appls_bind
-pr3_iso_appls_cast
-pr3_iso_beta
-pr3_lift
-pr3_pr0_pr2_t
-pr3_pr1
-pr3_pr2
-pr3_pr2_pr2_t
-pr3_pr2_pr3_t
-pr3_pr3_pr3_t
-pr3_refl
-pr3_sing
-pr3_strip
-pr3_subst1
-pr3_t
-pr3_thin_dx
-pr3_wcpr0_t
-ptrans
-r
-r_arith0
-r_arith1
-r_arith2
-r_arith3
-r_arith4
-r_arith5
-r_arith6
-r_arith7
-r_dis
-r_minus
-r_plus
-r_plus_sym
-r_S
-s
-s_arith0
-s_arith1
-sc3
-sc3_abbr
-sc3_abst
-sc3_appl
-sc3_arity
-sc3_arity_csubc
-sc3_arity_gen
-sc3_bind
-sc3_cast
-sc3_lift
-sc3_lift1
-sc3_props__sc3_sn3_abst
-sc3_repl
-sc3_sn3
-s_inc
-s_inj
-s_le
-s_le_gen
-s_lt
-s_lt_gen
-s_minus
-sn3
-sn3_abbr
-sn3_appl_abbr
-sn3_appl_appl
-sn3_appl_appls
-sn3_appl_beta
-sn3_appl_bind
-sn3_appl_cast
-sn3_appl_lref
-sn3_appls_abbr
-sn3_appls_beta
-sn3_appls_bind
-sn3_appls_cast
-sn3_appls_lref
-sn3_beta
-sn3_bind
-sn3_cast
-sn3_cdelta
-sn3_cflat
-sn3_change
-sn3_cpr3_trans
-sn3_gen_bind
-sn3_gen_cflat
-sn3_gen_def
-sn3_gen_flat
-sn3_gen_head
-sn3_gen_lift
-sn3_lift
-sn3_nf2
-sn3_pr2_intro
-sn3_pr3_trans
-sn3_shift
-sn3_sing
-sns3
-sns3_lifts
-sns3_lifts1
-s_plus
-s_plus_sym
-s_r
-s_S
-sty0
-sty0_abbr
-sty0_abst
-sty0_appl
-sty0_bind
-sty0_cast
-sty0_correct
-sty0_gen_appl
-sty0_gen_bind
-sty0_gen_cast
-sty0_gen_lref
-sty0_gen_sort
-sty0_lift
-sty0_sort
-sty1
-sty1_abbr
-sty1_appl
-sty1_bind
-sty1_cast2
-sty1_cnt
-sty1_correct
-sty1_lift
-sty1_sing
-sty1_sty0
-sty1_trans
-subst
-subst0
-subst0_both
-subst0_confluence_eq
-subst0_confluence_lift
-subst0_confluence_neq
-subst0_fst
-subst0_gen_head
-subst0_gen_lift_false
-subst0_gen_lift_ge
-subst0_gen_lift_lt
-subst0_gen_lift_rev_ge
-subst0_gen_lref
-subst0_gen_sort
-subst0_lift_ge
-subst0_lift_ge_s
-subst0_lift_ge_S
-subst0_lift_lt
-subst0_lref
-subst0_refl
-subst0_snd
-subst0_subst0
-subst0_subst0_back
-subst0_tlt
-subst0_tlt_head
-subst0_trans
-subst0_weight_le
-subst0_weight_lt
-subst1
-subst1_confluence_eq
-subst1_confluence_lift
-subst1_confluence_neq
-subst1_ex
-subst1_gen_head
-subst1_gen_lift_eq
-subst1_gen_lift_ge
-subst1_gen_lift_lt
-subst1_gen_lref
-subst1_gen_sort
-subst1_head
-subst1_lift_ge
-subst1_lift_lt
-subst1_lift_S
-subst1_refl
-subst1_single
-subst1_subst1
-subst1_subst1_back
-subst1_trans
-subst_head
-subst_lift_SO
-subst_lref_eq
-subst_lref_gt
-subst_lref_lt
-subst_sort
-subst_subst0
-T
-TApp
-TCons
-tcons_tapp_ex
-term_dec
-terms_props__bind_dec
-terms_props__flat_dec
-terms_props__kind_dec
-THead
-THeads
-theads_tapp
-thead_x_lift_y_y
-thead_x_y_y
-tle
-tle_r
-TList
-tlist_ind_rev
-TLRef
-tlt
-tlt_head_dx
-tlt_head_sx
-tlt_trans
-tlt_wf_ind
-tlt_wf__q_ind
-TNil
-trans
-tslen
-tslt
-tslt_wf_ind
-tslt_wf__q_ind
-TSort
-tweight
-tweight_lt
-ty3
-ty3_abbr
-ty3_abst
-ty3_acyclic
-ty3_appl
-ty3_arity
-ty3_bind
-ty3_cast
-ty3_conv
-ty3_correct
-ty3_cred_pr2
-ty3_cred_pr3
-ty3_csubst0
-ty3_fsubst0
-ty3_gen_abst_abst
-ty3_gen_appl
-ty3_gen_appl_nf2
-ty3_gen_bind
-ty3_gen_cabbr
-ty3_gen_cast
-ty3_gen_cvoid
-ty3_gen_lift
-ty3_gen_lref
-ty3_gen_sort
-ty3_getl_subst0
-ty3_inference
-ty3_inv_appls_lref_nf2
-ty3_inv_lref_lref_nf2
-ty3_inv_lref_nf2
-ty3_inv_lref_nf2_pc3
-ty3_lift
-ty3_nf2_gen__ty3_nf2_inv_abst_aux
-ty3_nf2_inv_abst
-ty3_nf2_inv_abst_premise
-ty3_nf2_inv_abst_premise_csort
-ty3_nf2_inv_all
-ty3_nf2_inv_sort
-ty3_predicative
-ty3_repellent
-ty3_sconv
-ty3_sconv_pc3
-ty3_shift1
-ty3_sn3
-ty3_sort
-ty3_sred_back
-ty3_sred_pr0
-ty3_sred_pr1
-ty3_sred_pr2
-ty3_sred_pr3
-ty3_sred_wcpr0_pr0
-ty3_sty0
-ty3_subst0
-ty3_tred
-ty3_typecheck
-ty3_unique
-tys3
-tys3_cons
-tys3_gen_cons
-tys3_gen_nil
-tys3_nil
-Void
-wadd
-wadd_le
-wadd_lt
-wadd_O
-wcpr0
-wcpr0_comp
-wcpr0_drop
-wcpr0_drop_back
-wcpr0_gen_head
-wcpr0_gen_sort
-wcpr0_getl
-wcpr0_getl_back
-wcpr0_refl
-weight
-weight_add_O
-weight_add_S
-weight_eq
-weight_le
-weight_map
-wf3
-wf3_bind
-wf3_clear_conf
-wf3_flat
-wf3_gen_bind1
-wf3_gen_flat1
-wf3_gen_head2
-wf3_gen_sort1
-wf3_getl_conf
-wf3_idem
-wf3_mono
-wf3_pc3_conf
-wf3_pr2_conf
-wf3_pr3_conf
-wf3_sort
-wf3_total
-wf3_ty3
-wf3_ty3_conf
-wf3_void
+"A"
+"Abbr"
+"Abst"
+"abst_dec"
+"AHead"
+"ahead_inj_snd"
+"aplus"
+"aplus_ahead_simpl"
+"aplus_asort_le_simpl"
+"aplus_asort_O_simpl"
+"aplus_asort_simpl"
+"aplus_assoc"
+"aplus_asucc"
+"aplus_asucc_false"
+"aplus_gz_ge"
+"aplus_gz_le"
+"aplus_inj"
+"aplus_reg_r"
+"aplus_sort_O_S_simpl"
+"aplus_sort_S_S_simpl"
+"app1"
+"Appl"
+"aprem"
+"aprem_asucc"
+"aprem_gen_head_O"
+"aprem_gen_head_S"
+"aprem_gen_sort"
+"aprem_repl"
+"aprem_succ"
+"aprem_zero"
+"arity"
+"arity_abbr"
+"arity_abst"
+"arity_appl"
+"arity_appls_abbr"
+"arity_appls_appl"
+"arity_appls_bind"
+"arity_appls_cast"
+"arity_aprem"
+"arity_bind"
+"arity_cast"
+"arity_cimp_conf"
+"arity_fsubst0"
+"arity_gen_abst"
+"arity_gen_appl"
+"arity_gen_appls"
+"arity_gen_bind"
+"arity_gen_cast"
+"arity_gen_cvoid"
+"arity_gen_cvoid_subst0"
+"arity_gen_lift"
+"arity_gen_lref"
+"arity_gen_sort"
+"arity_head"
+"arity_lift"
+"arity_lift1"
+"arity_mono"
+"arity_nf2_inv_all"
+"arity_repellent"
+"arity_repl"
+"arity_sort"
+"arity_sred_pr2"
+"arity_sred_pr3"
+"arity_sred_wcpr0_pr0"
+"arity_sred_wcpr0_pr1"
+"arity_subst0"
+"ASort"
+"asucc"
+"asucc_gen_head"
+"asucc_gen_sort"
+"asucc_inj"
+"asucc_repl"
+"B"
+"Bind"
+"bind_dec_not"
+"binder_dec"
+"C"
+"Cast"
+"cbk"
+"CHead"
+"chead_ctail"
+"cimp"
+"cimp_bind"
+"cimp_flat_dx"
+"cimp_flat_sx"
+"cimp_getl_conf"
+"cle"
+"clear"
+"clear_bind"
+"clear_cle"
+"clear_clear"
+"clear_ctail"
+"clear_flat"
+"clear_gen_all"
+"clear_gen_bind"
+"clear_gen_flat"
+"clear_gen_flat_r"
+"clear_gen_sort"
+"clear_getl_trans"
+"clear_mono"
+"clear_pc3_trans"
+"clear_pr2_trans"
+"clear_pr3_trans"
+"clear_trans"
+"clear_wf3_trans"
+"cle_flt_trans"
+"cle_head"
+"clen"
+"cle_r"
+"cle_trans_head"
+"clt"
+"clt_cong"
+"clt_head"
+"clt_thead"
+"clt_wf_ind"
+"clt_wf__q_ind"
+"cnt"
+"cnt_head"
+"cnt_lift"
+"cnt_sort"
+"CSort"
+"csuba"
+"csuba_abst"
+"csuba_arity"
+"csuba_arity_rev"
+"csuba_clear_conf"
+"csuba_clear_trans"
+"csuba_drop_abbr"
+"csuba_drop_abbr_rev"
+"csuba_drop_abst"
+"csuba_drop_abst_rev"
+"csuba_gen_abbr"
+"csuba_gen_abbr_rev"
+"csuba_gen_abst"
+"csuba_gen_abst_rev"
+"csuba_gen_bind"
+"csuba_gen_bind_rev"
+"csuba_gen_flat"
+"csuba_gen_flat_rev"
+"csuba_gen_void"
+"csuba_gen_void_rev"
+"csuba_getl_abbr"
+"csuba_getl_abbr_rev"
+"csuba_getl_abst"
+"csuba_getl_abst_rev"
+"csuba_head"
+"csuba_refl"
+"csuba_sort"
+"csuba_void"
+"csubc"
+"csubc_abst"
+"csubc_arity_conf"
+"csubc_arity_trans"
+"csubc_clear_conf"
+"csubc_csuba"
+"csubc_drop1_conf_rev"
+"csubc_drop_conf_O"
+"csubc_drop_conf_rev"
+"csubc_gen_head_l"
+"csubc_gen_head_r"
+"csubc_gen_sort_l"
+"csubc_gen_sort_r"
+"csubc_getl_conf"
+"csubc_head"
+"csubc_refl"
+"csubc_sort"
+"csubc_void"
+"csubst0"
+"csubst0_both"
+"csubst0_both_bind"
+"csubst0_clear_O"
+"csubst0_clear_O_back"
+"csubst0_clear_S"
+"csubst0_clear_trans"
+"csubst0_drop_eq"
+"csubst0_drop_eq_back"
+"csubst0_drop_gt"
+"csubst0_drop_gt_back"
+"csubst0_drop_lt"
+"csubst0_drop_lt_back"
+"csubst0_fst"
+"csubst0_fst_bind"
+"csubst0_gen_head"
+"csubst0_gen_S_bind_2"
+"csubst0_gen_sort"
+"csubst0_getl_ge"
+"csubst0_getl_ge_back"
+"csubst0_getl_lt"
+"csubst0_getl_lt_back"
+"csubst0_snd"
+"csubst0_snd_bind"
+"csubst1"
+"csubst1_bind"
+"csubst1_flat"
+"csubst1_gen_head"
+"csubst1_getl_ge"
+"csubst1_getl_ge_back"
+"csubst1_getl_lt"
+"csubst1_head"
+"csubst1_refl"
+"csubst1_sing"
+"csubt"
+"csubt_abst"
+"csubt_clear_conf"
+"csubt_csuba"
+"csubt_drop_abbr"
+"csubt_drop_abst"
+"csubt_drop_flat"
+"csubt_gen_abbr"
+"csubt_gen_abst"
+"csubt_gen_bind"
+"csubt_gen_flat"
+"csubt_getl_abbr"
+"csubt_getl_abst"
+"csubt_head"
+"csubt_pc3"
+"csubt_pr2"
+"csubt_refl"
+"csubt_sort"
+"csubt_ty3"
+"csubt_ty3_ld"
+"csubt_void"
+"csubv"
+"csubv_bind"
+"csubv_bind_same"
+"csubv_clear_conf"
+"csubv_clear_conf_void"
+"csubv_drop_conf"
+"csubv_flat"
+"csubv_getl_conf"
+"csubv_getl_conf_void"
+"csubv_refl"
+"csubv_sort"
+"csubv_void"
+"CTail"
+"c_tail_ind"
+"cweight"
+"dnf_dec"
+"dnf_dec2"
+"drop"
+"drop1"
+"drop1_cons"
+"drop1_cons_tail"
+"drop1_csubc_trans"
+"drop1_gen_pcons"
+"drop1_gen_pnil"
+"drop1_getl_trans"
+"drop1_nil"
+"drop1_skip_bind"
+"drop1_trans"
+"drop_clear"
+"drop_clear_O"
+"drop_clear_S"
+"drop_conf_ge"
+"drop_conf_lt"
+"drop_conf_rev"
+"drop_csubc_trans"
+"drop_ctail"
+"drop_drop"
+"drop_gen_drop"
+"drop_gen_refl"
+"drop_gen_skip_l"
+"drop_gen_skip_r"
+"drop_gen_sort"
+"drop_getl_trans_ge"
+"drop_getl_trans_le"
+"drop_getl_trans_lt"
+"drop_mono"
+"drop_refl"
+"drop_S"
+"drop_skip"
+"drop_skip_bind"
+"drop_skip_flat"
+"drop_trans_ge"
+"drop_trans_le"
+"ex1_arity"
+"ex1_c"
+"ex1__leq_sort_SS"
+"ex1_t"
+"ex1_ty3"
+"ex2_arity"
+"ex2_c"
+"ex2_nf2"
+"ex2_t"
+"F"
+"Flat"
+"flt"
+"flt_arith0"
+"flt_arith1"
+"flt_arith2"
+"flt_shift"
+"flt_thead_dx"
+"flt_thead_sx"
+"flt_trans"
+"flt_wf_ind"
+"flt_wf__q_ind"
+"fsubst0"
+"fsubst0_both"
+"fsubst0_fst"
+"fsubst0_gen_base"
+"fsubst0_snd"
+"fweight"
+"G"
+"getl"
+"getl_clear_bind"
+"getl_clear_conf"
+"getl_clear_trans"
+"getl_conf_ge_drop"
+"getl_conf_le"
+"getl_csubst1"
+"getl_ctail"
+"getl_ctail_clen"
+"getl_dec"
+"getl_drop"
+"getl_drop_conf_ge"
+"getl_drop_conf_lt"
+"getl_drop_conf_rev"
+"getl_drop_trans"
+"getl_flat"
+"getl_flt"
+"getl_gen_2"
+"getl_gen_all"
+"getl_gen_bind"
+"getl_gen_flat"
+"getl_gen_O"
+"getl_gen_S"
+"getl_gen_sort"
+"getl_gen_tail"
+"getl_head"
+"getl_intro"
+"getl_mono"
+"getl_refl"
+"getl_trans"
+"getl_wf3_trans"
+"gz"
+"iso"
+"iso_flats_flat_bind_false"
+"iso_flats_lref_bind_false"
+"iso_gen_head"
+"iso_gen_lref"
+"iso_gen_sort"
+"iso_head"
+"iso_lref"
+"iso_refl"
+"iso_sort"
+"iso_trans"
+"K"
+"leq"
+"leq_ahead_asucc_false"
+"leq_ahead_false_1"
+"leq_ahead_false_2"
+"leq_asucc"
+"leq_asucc_false"
+"leq_eq"
+"leq_gen_head1"
+"leq_gen_head2"
+"leq_gen_sort1"
+"leq_gen_sort2"
+"leq_head"
+"leq_leqz"
+"leq_refl"
+"leq_sort"
+"leq_sym"
+"leq_trans"
+"leqz"
+"leqz_head"
+"leqz_leq"
+"leqz_sort"
+"lift"
+"lift1"
+"lift1_bind"
+"lift1_cons_tail"
+"lift1_flat"
+"lift1_free"
+"lift1_lift1"
+"lift1_lref"
+"lift1_sort"
+"lift1_xhg"
+"lift_bind"
+"lift_d"
+"lift_flat"
+"lift_free"
+"lift_free_sym"
+"lift_gen_bind"
+"lift_gen_flat"
+"lift_gen_head"
+"lift_gen_lift"
+"lift_gen_lref"
+"lift_gen_lref_false"
+"lift_gen_lref_ge"
+"lift_gen_lref_lt"
+"lift_gen_sort"
+"lift_head"
+"lift_inj"
+"lift_lref_ge"
+"lift_lref_gt"
+"lift_lref_lt"
+"lift_r"
+"lifts"
+"lifts1"
+"lifts1_cons"
+"lifts1_flat"
+"lifts1_nil"
+"lifts1_xhg"
+"lifts_inj"
+"lift_sort"
+"lifts_tapp"
+"lift_tle"
+"lift_tlt_dx"
+"lift_weight"
+"lift_weight_add"
+"lift_weight_add_O"
+"lift_weight_map"
+"llt"
+"llt_head_dx"
+"llt_head_sx"
+"llt_repl"
+"llt_trans"
+"llt_wf_ind"
+"llt_wf__q_ind"
+"lref_map"
+"lweight"
+"lweight_repl"
+"minus_s_s"
+"mk_G"
+"next_plus"
+"next_plus_assoc"
+"next_plus_gz"
+"next_plus_lt"
+"next_plus_next"
+"nf0_dec"
+"nf2"
+"nf2_abst"
+"nf2_abst_shift"
+"nf2_appl_lref"
+"nf2_appls_lref"
+"nf2_csort_lref"
+"nf2_dec"
+"nf2_gen_abbr"
+"nf2_gen_abst"
+"nf2_gen_beta"
+"nf2_gen_cast"
+"nf2_gen_flat"
+"nf2_gen_lref"
+"nf2_gen__nf2_gen_aux"
+"nf2_gen_void"
+"nf2_iso_appls_lref"
+"nf2_lift"
+"nf2_lift1"
+"nf2_lref_abst"
+"nf2_pr3_confluence"
+"nf2_pr3_unfold"
+"nf2_sn3"
+"nf2_sort"
+"nfs2"
+"nfs2_tapp"
+"node_inh"
+"not_abbr_abst"
+"not_abbr_void"
+"not_abst_void"
+"not_void_abst"
+"pc1"
+"pc1_head"
+"pc1_head_1"
+"pc1_head_2"
+"pc1_pr0_r"
+"pc1_pr0_u"
+"pc1_pr0_u2"
+"pc1_pr0_x"
+"pc1_refl"
+"pc1_s"
+"pc1_t"
+"pc3"
+"pc3_abst_dec"
+"pc3_dec"
+"pc3_eta"
+"pc3_fsubst0"
+"pc3_gen_abst"
+"pc3_gen_abst_shift"
+"pc3_gen_appls_lref_abst"
+"pc3_gen_appls_lref_sort"
+"pc3_gen_appls_sort_abst"
+"pc3_gen_cabbr"
+"pc3_gen_lift"
+"pc3_gen_lift_abst"
+"pc3_gen_not_abst"
+"pc3_gen_sort"
+"pc3_gen_sort_abst"
+"pc3_head_1"
+"pc3_head_12"
+"pc3_head_2"
+"pc3_head_21"
+"pc3_ind_left"
+"pc3_ind_left__pc3_left_pc3"
+"pc3_ind_left__pc3_left_pr3"
+"pc3_ind_left__pc3_left_sym"
+"pc3_ind_left__pc3_left_trans"
+"pc3_ind_left__pc3_pc3_left"
+"pc3_left"
+"pc3_left_r"
+"pc3_left_ur"
+"pc3_left_ux"
+"pc3_lift"
+"pc3_nf2"
+"pc3_nf2_unfold"
+"pc3_pc1"
+"pc3_pr0_pr2_t"
+"pc3_pr2_fsubst0"
+"pc3_pr2_fsubst0_back"
+"pc3_pr2_pr2_t"
+"pc3_pr2_pr3_t"
+"pc3_pr2_r"
+"pc3_pr2_u"
+"pc3_pr2_u2"
+"pc3_pr2_x"
+"pc3_pr3_conf"
+"pc3_pr3_pc3_t"
+"pc3_pr3_r"
+"pc3_pr3_t"
+"pc3_pr3_x"
+"pc3_refl"
+"pc3_s"
+"pc3_t"
+"pc3_thin_dx"
+"pc3_wcpr0"
+"pc3_wcpr0__pc3_wcpr0_t_aux"
+"pc3_wcpr0_t"
+"pr0"
+"pr0_beta"
+"pr0_comp"
+"pr0_confluence"
+"pr0_confluence__pr0_cong_delta"
+"pr0_confluence__pr0_cong_upsilon_cong"
+"pr0_confluence__pr0_cong_upsilon_delta"
+"pr0_confluence__pr0_cong_upsilon_refl"
+"pr0_confluence__pr0_cong_upsilon_zeta"
+"pr0_confluence__pr0_delta_delta"
+"pr0_confluence__pr0_delta_tau"
+"pr0_confluence__pr0_upsilon_upsilon"
+"pr0_delta"
+"pr0_delta1"
+"pr0_gen_abbr"
+"pr0_gen_abst"
+"pr0_gen_appl"
+"pr0_gen_cast"
+"pr0_gen_lift"
+"pr0_gen_lref"
+"pr0_gen_sort"
+"pr0_gen_void"
+"pr0_lift"
+"pr0_refl"
+"pr0_subst0"
+"pr0_subst0_back"
+"pr0_subst0_fwd"
+"pr0_subst1"
+"pr0_subst1_back"
+"pr0_subst1_fwd"
+"pr0_tau"
+"pr0_upsilon"
+"pr0_zeta"
+"pr1"
+"pr1_comp"
+"pr1_confluence"
+"pr1_eta"
+"pr1_head_1"
+"pr1_head_2"
+"pr1_pr0"
+"pr1_refl"
+"pr1_sing"
+"pr1_strip"
+"pr1_t"
+"pr2"
+"pr2_cflat"
+"pr2_change"
+"pr2_confluence"
+"pr2_confluence__pr2_delta_delta"
+"pr2_confluence__pr2_free_delta"
+"pr2_confluence__pr2_free_free"
+"pr2_ctail"
+"pr2_delta"
+"pr2_delta1"
+"pr2_free"
+"pr2_gen_abbr"
+"pr2_gen_abst"
+"pr2_gen_appl"
+"pr2_gen_cabbr"
+"pr2_gen_cast"
+"pr2_gen_cbind"
+"pr2_gen_cflat"
+"pr2_gen_csort"
+"pr2_gen_ctail"
+"pr2_gen_lift"
+"pr2_gen_lref"
+"pr2_gen_sort"
+"pr2_gen_void"
+"pr2_head_1"
+"pr2_head_2"
+"pr2_lift"
+"pr2_subst1"
+"pr2_thin_dx"
+"pr3"
+"pr3_cflat"
+"pr3_confluence"
+"pr3_eta"
+"pr3_flat"
+"pr3_gen_abbr"
+"pr3_gen_abst"
+"pr3_gen_appl"
+"pr3_gen_bind"
+"pr3_gen_cabbr"
+"pr3_gen_cast"
+"pr3_gen_lift"
+"pr3_gen_lref"
+"pr3_gen_sort"
+"pr3_gen_void"
+"pr3_head_1"
+"pr3_head_12"
+"pr3_head_2"
+"pr3_head_21"
+"pr3_iso_appl_bind"
+"pr3_iso_appls_abbr"
+"pr3_iso_appls_appl_bind"
+"pr3_iso_appls_beta"
+"pr3_iso_appls_bind"
+"pr3_iso_appls_cast"
+"pr3_iso_beta"
+"pr3_lift"
+"pr3_pr0_pr2_t"
+"pr3_pr1"
+"pr3_pr2"
+"pr3_pr2_pr2_t"
+"pr3_pr2_pr3_t"
+"pr3_pr3_pr3_t"
+"pr3_refl"
+"pr3_sing"
+"pr3_strip"
+"pr3_subst1"
+"pr3_t"
+"pr3_thin_dx"
+"pr3_wcpr0_t"
+"ptrans"
+"r"
+"r_arith0"
+"r_arith1"
+"r_arith2"
+"r_arith3"
+"r_arith4"
+"r_arith5"
+"r_arith6"
+"r_arith7"
+"r_dis"
+"r_minus"
+"r_plus"
+"r_plus_sym"
+"r_S"
+"s"
+"s_arith0"
+"s_arith1"
+"sc3"
+"sc3_abbr"
+"sc3_abst"
+"sc3_appl"
+"sc3_arity"
+"sc3_arity_csubc"
+"sc3_arity_gen"
+"sc3_bind"
+"sc3_cast"
+"sc3_lift"
+"sc3_lift1"
+"sc3_props__sc3_sn3_abst"
+"sc3_repl"
+"sc3_sn3"
+"s_inc"
+"s_inj"
+"s_le"
+"s_le_gen"
+"s_lt"
+"s_lt_gen"
+"s_minus"
+"sn3"
+"sn3_abbr"
+"sn3_appl_abbr"
+"sn3_appl_appl"
+"sn3_appl_appls"
+"sn3_appl_beta"
+"sn3_appl_bind"
+"sn3_appl_cast"
+"sn3_appl_lref"
+"sn3_appls_abbr"
+"sn3_appls_beta"
+"sn3_appls_bind"
+"sn3_appls_cast"
+"sn3_appls_lref"
+"sn3_beta"
+"sn3_bind"
+"sn3_cast"
+"sn3_cdelta"
+"sn3_cflat"
+"sn3_change"
+"sn3_cpr3_trans"
+"sn3_gen_bind"
+"sn3_gen_cflat"
+"sn3_gen_def"
+"sn3_gen_flat"
+"sn3_gen_head"
+"sn3_gen_lift"
+"sn3_lift"
+"sn3_nf2"
+"sn3_pr2_intro"
+"sn3_pr3_trans"
+"sn3_shift"
+"sn3_sing"
+"sns3"
+"sns3_lifts"
+"sns3_lifts1"
+"s_plus"
+"s_plus_sym"
+"s_r"
+"s_S"
+"sty0"
+"sty0_abbr"
+"sty0_abst"
+"sty0_appl"
+"sty0_bind"
+"sty0_cast"
+"sty0_correct"
+"sty0_gen_appl"
+"sty0_gen_bind"
+"sty0_gen_cast"
+"sty0_gen_lref"
+"sty0_gen_sort"
+"sty0_lift"
+"sty0_sort"
+"sty1"
+"sty1_abbr"
+"sty1_appl"
+"sty1_bind"
+"sty1_cast2"
+"sty1_cnt"
+"sty1_correct"
+"sty1_lift"
+"sty1_sing"
+"sty1_sty0"
+"sty1_trans"
+"subst"
+"subst0"
+"subst0_both"
+"subst0_confluence_eq"
+"subst0_confluence_lift"
+"subst0_confluence_neq"
+"subst0_fst"
+"subst0_gen_head"
+"subst0_gen_lift_false"
+"subst0_gen_lift_ge"
+"subst0_gen_lift_lt"
+"subst0_gen_lift_rev_ge"
+"subst0_gen_lref"
+"subst0_gen_sort"
+"subst0_lift_ge"
+"subst0_lift_ge_s"
+"subst0_lift_ge_S"
+"subst0_lift_lt"
+"subst0_lref"
+"subst0_refl"
+"subst0_snd"
+"subst0_subst0"
+"subst0_subst0_back"
+"subst0_tlt"
+"subst0_tlt_head"
+"subst0_trans"
+"subst0_weight_le"
+"subst0_weight_lt"
+"subst1"
+"subst1_confluence_eq"
+"subst1_confluence_lift"
+"subst1_confluence_neq"
+"subst1_ex"
+"subst1_gen_head"
+"subst1_gen_lift_eq"
+"subst1_gen_lift_ge"
+"subst1_gen_lift_lt"
+"subst1_gen_lref"
+"subst1_gen_sort"
+"subst1_head"
+"subst1_lift_ge"
+"subst1_lift_lt"
+"subst1_lift_S"
+"subst1_refl"
+"subst1_single"
+"subst1_subst1"
+"subst1_subst1_back"
+"subst1_trans"
+"subst_head"
+"subst_lift_SO"
+"subst_lref_eq"
+"subst_lref_gt"
+"subst_lref_lt"
+"subst_sort"
+"subst_subst0"
+"T"
+"TApp"
+"TCons"
+"tcons_tapp_ex"
+"term_dec"
+"terms_props__bind_dec"
+"terms_props__flat_dec"
+"terms_props__kind_dec"
+"THead"
+"THeads"
+"theads_tapp"
+"thead_x_lift_y_y"
+"thead_x_y_y"
+"tle"
+"tle_r"
+"TList"
+"tlist_ind_rev"
+"TLRef"
+"tlt"
+"tlt_head_dx"
+"tlt_head_sx"
+"tlt_trans"
+"tlt_wf_ind"
+"tlt_wf__q_ind"
+"TNil"
+"trans"
+"tslen"
+"tslt"
+"tslt_wf_ind"
+"tslt_wf__q_ind"
+"TSort"
+"tweight"
+"tweight_lt"
+"ty3"
+"ty3_abbr"
+"ty3_abst"
+"ty3_acyclic"
+"ty3_appl"
+"ty3_arity"
+"ty3_bind"
+"ty3_cast"
+"ty3_conv"
+"ty3_correct"
+"ty3_cred_pr2"
+"ty3_cred_pr3"
+"ty3_csubst0"
+"ty3_fsubst0"
+"ty3_gen_abst_abst"
+"ty3_gen_appl"
+"ty3_gen_appl_nf2"
+"ty3_gen_bind"
+"ty3_gen_cabbr"
+"ty3_gen_cast"
+"ty3_gen_cvoid"
+"ty3_gen_lift"
+"ty3_gen_lref"
+"ty3_gen_sort"
+"ty3_getl_subst0"
+"ty3_inference"
+"ty3_inv_appls_lref_nf2"
+"ty3_inv_lref_lref_nf2"
+"ty3_inv_lref_nf2"
+"ty3_inv_lref_nf2_pc3"
+"ty3_lift"
+"ty3_nf2_gen__ty3_nf2_inv_abst_aux"
+"ty3_nf2_inv_abst"
+"ty3_nf2_inv_abst_premise"
+"ty3_nf2_inv_abst_premise_csort"
+"ty3_nf2_inv_all"
+"ty3_nf2_inv_sort"
+"ty3_predicative"
+"ty3_repellent"
+"ty3_sconv"
+"ty3_sconv_pc3"
+"ty3_shift1"
+"ty3_sn3"
+"ty3_sort"
+"ty3_sred_back"
+"ty3_sred_pr0"
+"ty3_sred_pr1"
+"ty3_sred_pr2"
+"ty3_sred_pr3"
+"ty3_sred_wcpr0_pr0"
+"ty3_sty0"
+"ty3_subst0"
+"ty3_tred"
+"ty3_typecheck"
+"ty3_unique"
+"tys3"
+"tys3_cons"
+"tys3_gen_cons"
+"tys3_gen_nil"
+"tys3_nil"
+"Void"
+"wadd"
+"wadd_le"
+"wadd_lt"
+"wadd_O"
+"wcpr0"
+"wcpr0_comp"
+"wcpr0_drop"
+"wcpr0_drop_back"
+"wcpr0_gen_head"
+"wcpr0_gen_sort"
+"wcpr0_getl"
+"wcpr0_getl_back"
+"wcpr0_refl"
+"weight"
+"weight_add_O"
+"weight_add_S"
+"weight_eq"
+"weight_le"
+"weight_map"
+"wf3"
+"wf3_bind"
+"wf3_clear_conf"
+"wf3_flat"
+"wf3_gen_bind1"
+"wf3_gen_flat1"
+"wf3_gen_head2"
+"wf3_gen_sort1"
+"wf3_getl_conf"
+"wf3_idem"
+"wf3_mono"
+"wf3_pc3_conf"
+"wf3_pr2_conf"
+"wf3_pr3_conf"
+"wf3_sort"
+"wf3_total"
+"wf3_ty3"
+"wf3_ty3_conf"
+"wf3_void"
index 852ff574b606a5949daec454b52b2790cc5426a8..b0dd49768d6369c1ecc97391a424b25f2a99b75e 100644 (file)
-aaa_cpm_SO
-aaa_csx
-aaa_fsb
-aaa_ind_csx
-aaa_ind_csx_aux
-aaa_ind_csx_cpxs
-aaa_ind_csx_cpxs_aux
-aaa_ind_fpb
-aaa_ind_fpb_aux
-aaa_ind_fpbg
-aaa_ind_fpbg_aux
-cnr
-cnr_abbr_neg
-cnr_abst
-cnr_appl_simple
-cnr_dec_teqx
-cnr_gref
-cnr_inv_abbr_neg
-cnr_inv_abst
-cnr_inv_appl
-cnr_inv_cast
-cnr_inv_lifts
-cnr_inv_lref_abbr
-cnr_lifts
-cnr_lref_abst
-cnr_lref_atom
-cnr_lref_unit
-cnr_sort
-cnuw
-cnuw_abbr_neg
-cnuw_abst
-cnuw_appl_simple
-cnuw_atom_drops
-cnuw_cpms_trans
-cnuw_ctop
-cnuw_dec
-cnuw_dec_ex
-cnuw_fwd_appl
-cnuw_gref
-cnuw_inv_abbr_pos
-cnuw_inv_cast
-cnuw_inv_lifts
-cnuw_inv_zero_pair
-cnuw_lifts
-cnuw_lref
-cnuw_sort
-cnuw_unit_drops
-cnuw_zero_unit
-cnv
-cnv_acle_omega
-cnv_acle_one
-cnv_acle_trans
-cnv_appl
-cnv_appl_cpes
-cnv_appl_cpts
-cnv_appl_ge
-cnv_appl_ntas_ge
-cnv_bind
-cnv_cast
-cnv_cast_cpes
-cnv_cast_cpts
-cnv_cpcs_dec
-cnv_cpes_dec
-cnv_cpm_conf_lpr_appl_appl_aux
-cnv_cpm_conf_lpr_appl_beta_aux
-cnv_cpm_conf_lpr_appl_theta_aux
-cnv_cpm_conf_lpr_atom_atom_aux
-cnv_cpm_conf_lpr_atom_delta_aux
-cnv_cpm_conf_lpr_atom_ell_aux
-cnv_cpm_conf_lpr_atom_ess_aux
-cnv_cpm_conf_lpr_aux
-cnv_cpm_conf_lpr_beta_beta_aux
-cnv_cpm_conf_lpr_bind_bind_aux
-cnv_cpm_conf_lpr_bind_zeta_aux
-cnv_cpm_conf_lpr_cast_cast_aux
-cnv_cpm_conf_lpr_cast_ee_aux
-cnv_cpm_conf_lpr_cast_epsilon_aux
-cnv_cpm_conf_lpr_delta_delta_aux
-cnv_cpm_conf_lpr_delta_ell_aux
-cnv_cpm_conf_lpr_ee_ee_aux
-cnv_cpm_conf_lpr_epsilon_ee_aux
-cnv_cpm_conf_lpr_epsilon_epsilon_aux
-cnv_cpm_conf_lpr_sub
-cnv_cpm_conf_lpr_theta_theta_aux
-cnv_cpm_conf_lpr_zeta_zeta_aux
-cnv_cpmre_cpms_conf
-cnv_cpmre_mono
-cnv_cpmre_trans
-cnv_cpms_conf
-cnv_cpms_conf_eq
-cnv_cpms_conf_lpr
-cnv_cpms_conf_lpr_aux
-cnv_cpms_conf_lpr_refl_tneqx_sub
-cnv_cpms_conf_lpr_step_tneqx_sub
-cnv_cpms_conf_lpr_teqx_teqx_aux
-cnv_cpms_conf_lpr_teqx_tneqx_aux
-cnv_cpms_conf_lpr_tneqx_tneqx_aux
-cnv_cpms_fwd_appl_sn_decompose
-cnv_cpms_nta
-cnv_cpms_ntas
-cnv_cpms_strip_lpr_sub
-cnv_cpms_teqx_conf_lpr_aux
-cnv_cpms_teqx_strip_lpr_aux
-cnv_cpms_trans
-cnv_cpms_trans_lpr
-cnv_cpms_trans_lpr_sub
-cnv_cpm_teqx_conf_lpr
-cnv_cpm_teqx_conf_lpr_appl_appl_aux
-cnv_cpm_teqx_conf_lpr_atom_atom_aux
-cnv_cpm_teqx_conf_lpr_atom_ess_aux
-cnv_cpm_teqx_conf_lpr_aux
-cnv_cpm_teqx_conf_lpr_bind_bind_aux
-cnv_cpm_teqx_conf_lpr_cast_cast_aux
-cnv_cpm_teqx_cpm_trans_aux
-cnv_cpm_teqx_cpm_trans_sub
-cnv_cpm_trans
-cnv_cpm_trans_lpr
-cnv_cpm_trans_lpr_aux
-cnv_cpmuwe_mono
-cnv_cpmuwe_trans
-cnv_cpr_teqx_fwd_refl
-cnv_dec
-cnv_fpbg_refl_false
-cnv_fqu_conf
-cnv_fqup_conf
-cnv_fquq_conf
-cnv_fqus_conf
-cnv_fwd_aaa
-cnv_fwd_cpms_abst_dx_le
-cnv_fwd_cpm_SO
-cnv_fwd_cpms_total
-cnv_fwd_csx
-cnv_fwd_flat
-cnv_fwd_fsb
-cnv_fwd_pair_sn
-cnv_ind_cpes
-cnv_inv_appl
-cnv_inv_appl_aux
-cnv_inv_appl_cpes
-cnv_inv_appl_cpts
-cnv_inv_appl_ntas
-cnv_inv_bind
-cnv_inv_bind_aux
-cnv_inv_cast
-cnv_inv_cast_aux
-cnv_inv_cast_cpes
-cnv_inv_cast_cpts
-cnv_inv_gref
-cnv_inv_gref_aux
-cnv_inv_lifts
-cnv_inv_lref
-cnv_inv_lref_atom
-cnv_inv_lref_aux
-cnv_inv_lref_drops
-cnv_inv_lref_pair
-cnv_inv_lref_unit
-cnv_inv_zero
-cnv_inv_zero_aux
-cnv_lifts
-cnv_lprs_trans
-cnv_lpr_trans
-cnv_lref
-cnv_lref_drops
-cnv_nta_sn
-cnv_preserve
-cnv_R_cpmuwe_dec
-cnv_R_cpmuwe_total
-cnv_sort
-cnv_zero
-cnx
-cnx_abst
-cnx_appl_simple
-cnx_csx
-cnx_inv_abbr_neg
-cnx_inv_abbr_pos
-cnx_inv_abst
-cnx_inv_appl
-cnx_inv_cast
-cnx_inv_lifts
-cnx_inv_lref_pair
-cnx_lifts
-cnx_lref_atom
-cnx_lref_unit
-cnx_sort
-cnx_teqx_trans
-cpc
-cpc_conf
-cpc_cpcs
-cpc_fwd_cpr
-cpc_refl
-cpcs
-cpcs_aaa_mono
-cpcs_bind1
-cpcs_bind2
-cpcs_bind_dx
-cpcs_bind_sn
-cpcs_canc_dx
-cpcs_canc_sn
-cpcs_cpr_conf
-cpcs_cpr_div
-cpcs_cprs_conf
-cpcs_cprs_div
-cpcs_cprs_dx
-cpcs_cprs_sn
-cpcs_cprs_step_dx
-cpcs_cprs_step_sn
-cpcs_cpr_step_dx
-cpcs_cpr_step_sn
-cpcs_flat
-cpcs_flat_dx_cpr_rev
-cpcs_ind_dx
-cpcs_ind_sn
-cpcs_inv_abst_bi_dx
-cpcs_inv_abst_bi_sn
-cpcs_inv_abst_dx
-cpcs_inv_abst_sn
-cpcs_inv_cprs
-cpcs_inv_lifts_bi
-cpcs_inv_sort_abst
-cpcs_inv_sort_bi
-cpcs_lifts_bi
-cpcs_refl
-cpcs_step_dx
-cpcs_step_sn
-cpcs_strip
-cpcs_sym
-cpcs_trans
-cpc_sym
-cpes
-cpes_aaa_mono
-cpes_cpes_trans
-cpes_cpms_div
-cpes_cprs_trans
-cpes_fwd_abst_bi
-cpes_refl
-cpes_refl_aaa
-cpes_sym
-cpg
-cpg_appl
-cpg_atom
-cpg_beta
-cpg_bind
-cpg_cast
-cpg_cpx
-cpg_delta
-cpg_delta_drops
-cpg_ee
-cpg_ell
-cpg_ell_drops
-cpg_eps
-cpg_ess
-cpg_fwd_bind1_minus
-cpg_inv_abbr1
-cpg_inv_abst1
-cpg_inv_appl1
-cpg_inv_appl1_aux
-cpg_inv_appl1_simple
-cpg_inv_atom1
-cpg_inv_atom1_aux
-cpg_inv_atom1_drops
-cpg_inv_bind1
-cpg_inv_bind1_aux
-cpg_inv_cast1
-cpg_inv_cast1_aux
-cpg_inv_gref1
-cpg_inv_lifts_bi
-cpg_inv_lifts_sn
-cpg_inv_lref1
-cpg_inv_lref1_bind
-cpg_inv_lref1_drops
-cpg_inv_sort1
-cpg_inv_zero1
-cpg_inv_zero1_pair
-cpg_lifts_bi
-cpg_lifts_sn
-cpg_lref
-cpg_refl
-cpg_theta
-cpg_zeta
-cpm
-cpm_aaa_conf
-cpm_appl
-cpm_beta
-cpm_bind
-cpm_bind2
-cpm_bind_unit
-cpm_cast
-cpm_cpms
-cpm_delta
-cpm_delta_drops
-cpm_ee
-cpm_ell
-cpm_ell_drops
-cpm_eps
-cpm_ess
-cpm_fpb
-cpm_fpbq
-cpm_fsge_comp
-cpm_fwd_bind1_minus
-cpm_fwd_cpx
-cpm_fwd_plus
-cpm_fwd_plus_aux
-cpm_ind
-cpm_inv_abbr1
-cpm_inv_abst1
-cpm_inv_abst_bi
-cpm_inv_appl1
-cpm_inv_appl1_simple
-cpm_inv_atom1
-cpm_inv_atom1_drops
-cpm_inv_bind1
-cpm_inv_cast1
-cpm_inv_gref1
-cpm_inv_lifts_bi
-cpm_inv_lifts_sn
-cpm_inv_lref1
-cpm_inv_lref1_ctop
-cpm_inv_lref1_drops
-cpm_inv_sort1
-cpm_inv_zero1
-cpm_inv_zero1_unit
-cpm_lifts_bi
-cpm_lifts_sn
-cpm_lref
-cpmre
-cpmre_fwd_cpms
-cpmre_intro
-cpmre_total_aaa
-cpm_rex_conf
-cpms
-cpms_aaa_conf
-cpms_abst_dx_le_aaa
-cpms_appl
-cpms_appl_dx
-cpms_beta
-cpms_beta_dx
-cpms_beta_rc
-cpms_bind
-cpms_bind2_dx
-cpms_bind_alt
-cpms_bind_dx
-cpms_cast
-cpms_cast_sn
-cpms_cprre_trans
-cpms_cprs_trans
-cpms_delta
-cpms_delta_drops
-cpms_div
-cpms_ee
-cpms_ell
-cpms_ell_drops
-cpms_eps
-cpms_fpbg_trans
-cpms_fwd_cpxs
-cpms_fwd_fpbs
-cpms_ind_dx
-cpms_ind_sn
-cpms_inv_abbr_abst
-cpms_inv_abbr_sn_dx
-cpms_inv_abst_bi
-cpms_inv_abst_sn
-cpms_inv_abst_sn_cprs
-cpms_inv_appl_sn
-cpms_inv_cast1
-cpms_inv_delta_sn
-cpms_inv_ell_sn
-cpms_inv_gref1
-cpms_inv_lifts_bi
-cpms_inv_lifts_sn
-cpms_inv_lref1_ctop
-cpms_inv_lref1_drops
-cpms_inv_lref_sn
-cpms_inv_plus
-cpms_inv_sort1
-cpms_inv_succ_sn
-cpms_inv_zero1_unit
-cpms_lifts_bi
-cpms_lifts_sn
-cpms_lref
-cpm_sort
-cpms_reqx_conf_dx
-cpms_reqx_conf_sn
-cpms_sort
-cpms_step_dx
-cpms_step_sn
-cpms_teqx_ind_sn
-cpms_theta
-cpms_theta_dx
-cpms_theta_rc
-cpms_tneqx_fwd_fpbg
-cpms_tneqx_fwd_step_sn_aux
-cpms_total_aaa
-cpms_trans
-cpms_trans_swap
-cpms_zeta
-cpms_zeta_dx
-cpm_teqx_free
-cpm_teqx_ind
-cpm_teqx_inv_appl_sn
-cpm_teqx_inv_atom_sn
-cpm_teqx_inv_bind_dx
-cpm_teqx_inv_bind_sn
-cpm_teqx_inv_bind_sn_void
-cpm_teqx_inv_cast_sn
-cpm_teqx_inv_lref_sn
-cpm_theta
-cpm_tneqx_cpm_cpms_teqx_sym_fwd_fpbg
-cpm_tneqx_cpm_fpbg
-cpmuwe
-cpmuwe_abbr_neg
-cpmuwe_abst
-cpmuwe_ctop
-cpmuwe_fwd_cpms
-cpmuwe_gref
-cpmuwe_intro
-cpmuwe_sort
-cpmuwe_total_csx
-cpmuwe_zero_unit
-cpm_zeta
-cpr_abbr_pos_tneqx
-cpr_conf
-cpr_conf_lpr
-cpr_conf_lpr_atom_atom
-cpr_conf_lpr_atom_delta
-cpr_conf_lpr_beta_beta
-cpr_conf_lpr_bind_bind
-cpr_conf_lpr_bind_zeta
-cpr_conf_lpr_delta_delta
-cpr_conf_lpr_eps_eps
-cpr_conf_lpr_flat_beta
-cpr_conf_lpr_flat_eps
-cpr_conf_lpr_flat_flat
-cpr_conf_lpr_flat_theta
-cpr_conf_lpr_theta_theta
-cpr_conf_lpr_zeta_zeta
-cpr_cpcs_dx
-cpr_cpcs_sn
-cpr_cprs_conf_cpcs
-cpr_cprs_div
-cpr_div
-cpr_ext
-cpr_flat
-cpr_ind
-cpr_inv_atom1
-cpr_inv_atom1_drops
-cpr_inv_cast1
-cpr_inv_flat1
-cpr_inv_gref1
-cpr_inv_lref1
-cpr_inv_lref1_drops
-cpr_inv_sort1
-cpr_inv_zero1
-cpr_pair_sn
-cprre_cprs_conf
-cpr_refl
-cprre_mono
-cprre_total_csx
-cprs_abbr_pos_twneq
-cprs_conf
-cprs_conf_cpcs
-cprs_cpr_conf_cpcs
-cprs_cpr_div
-cprs_CTC
-cprs_div
-cprs_ext
-cprs_flat
-cprs_flat_dx
-cprs_flat_sn
-cprs_ind_dx
-cprs_ind_sn
-cprs_inv_appl_sn
-cprs_inv_cast1
-cprs_inv_cnr_sn
-cprs_inv_CTC
-cprs_inv_lref1_drops
-cprs_inv_sort1
-cprs_lpr_conf_dx
-cprs_lpr_conf_sn
-cprs_nta_trans
-cprs_nta_trans_cnv
-cprs_refl
-cprs_step_dx
-cprs_step_sn
-cprs_strip
-cprs_trans
-cpr_subst
-cpt
-cpt_appl
-cpt_bind
-cpt_cast
-cpt_cpts
-cpt_delta
-cpt_delta_drops
-cpt_ee
-cpt_ell
-cpt_ell_drops
-cpt_ess
-cpt_fwd_cpm
-cpt_fwd_plus
-cpt_fwd_plus_aux
-cpt_ind
-cpt_inv_appl_sn
-cpt_inv_atom_sn
-cpt_inv_atom_sn_drops
-cpt_inv_bind_sn
-cpt_inv_cast_sn
-cpt_inv_gref_sn
-cpt_inv_lifts_bi
-cpt_inv_lifts_sn
-cpt_inv_lref_sn
-cpt_inv_lref_sn_ctop
-cpt_inv_lref_sn_drops
-cpt_inv_sort_sn
-cpt_inv_zero_sn
-cpt_inv_zero_sn_unit
-cpt_lifts_bi
-cpt_lifts_sn
-cpt_lref
-cpt_refl
-cpts
-cpts_appl_dx
-cpts_bind_dx
-cpts_cast_sn
-cpts_cpms_conf_eq
-cpts_cprs_trans
-cpts_delta
-cpts_delta_drops
-cpts_ee
-cpts_ell
-cpts_ell_drops
-cpts_fwd_cpms
-cpts_ind_dx
-cpts_ind_sn
-cpts_inv_cast_sn
-cpts_inv_delta_sn
-cpts_inv_ell_sn
-cpts_inv_gref_sn
-cpts_inv_lifts_bi
-cpts_inv_lifts_sn
-cpts_inv_lref_sn
-cpts_inv_lref_sn_ctop
-cpts_inv_lref_sn_drops
-cpts_inv_sort_sn
-cpts_inv_succ_sn
-cpts_inv_zero_sn_unit
-cpts_lifts_bi
-cpts_lifts_sn
-cpts_lref
-cpt_sort
-cpts_refl
-cpts_sort
-cpts_step_dx
-cpts_step_sn
-cpts_total_aaa
-cpx
-cpx_aaa_conf
-cpx_aaa_conf_lpx
-cpx_beta
-cpx_bind
-cpx_bind2
-cpx_bind_unit
-cpx_cpxs
-cpx_delta
-cpx_delta_drops
-cpx_ee
-cpx_eps
-cpx_ess
-cpx_ext
-cpx_flat
-cpx_fsge_comp
-cpx_fwd_bind1_minus
-cpx_ind
-cpx_inv_abbr1
-cpx_inv_abst1
-cpx_inv_appl1
-cpx_inv_appl1_simple
-cpx_inv_atom1
-cpx_inv_atom1_drops
-cpx_inv_bind1
-cpx_inv_cast1
-cpx_inv_flat1
-cpx_inv_gref1
-cpx_inv_lifts_bi
-cpx_inv_lifts_sn
-cpx_inv_lref1
-cpx_inv_lref1_bind
-cpx_inv_lref1_drops
-cpx_inv_sort1
-cpx_inv_zero1
-cpx_inv_zero1_pair
-cpx_lifts_bi
-cpx_lifts_sn
-cpx_lref
-cpx_pair_sn
-cpx_refl
-cpx_req_conf_sn
-cpx_reqx_conf
-cpx_reqx_conf_dx
-cpx_reqx_conf_sn
-cpx_rex_conf
-cpxs
-cpxs_aaa_conf
-cpxs_beta
-cpxs_beta_dx
-cpxs_beta_rc
-cpxs_bind
-cpxs_bind2_dx
-cpxs_bind_alt
-cpxs_bind_dx
-cpxs_cnx
-cpxs_delta
-cpxs_delta_drops
-cpxs_ee
-cpxs_eps
-cpxs_ext
-cpxs_flat
-cpxs_flat_dx
-cpxs_flat_sn
-cpxs_fpbg_trans
-cpxs_fpbs
-cpxs_fpbs_trans
-cpxs_fqup_fpbs
-cpxs_fqus_fpbs
-cpxs_fqus_lpxs_fpbs
-cpxs_fwd_beta
-cpxs_fwd_beta_vector
-cpxs_fwd_cast
-cpxs_fwd_cast_vector
-cpxs_fwd_cnx
-cpxs_fwd_cnx_vector
-cpxs_fwd_delta_drops
-cpxs_fwd_delta_drops_vector
-cpxs_fwd_sort
-cpxs_fwd_sort_vector
-cpxs_fwd_theta
-cpxs_fwd_theta_vector
-cpxs_ind
-cpxs_ind_dx
-cpxs_inv_abbr1_dx
-cpxs_inv_abst1
-cpxs_inv_appl1
-cpxs_inv_cast1
-cpxs_inv_cnx1
-cpxs_inv_lifts_bi
-cpxs_inv_lifts_sn
-cpxs_inv_lref1
-cpxs_inv_lref1_drops
-cpxs_inv_sort1
-cpxs_inv_zero1
-cpxs_lifts_bi
-cpxs_lifts_sn
-cpxs_lref
-cpxs_pair_sn
-cpxs_refl
-cpxs_reqx_conf
-cpxs_reqx_conf_dx
-cpxs_reqx_conf_sn
-cpxs_sort
-cpxs_strap1
-cpxs_strap2
-cpxs_teqx_fpbs
-cpxs_teqx_fpbs_trans
-cpxs_theta
-cpxs_theta_dx
-cpxs_theta_rc
-cpxs_tneqx_fpbg
-cpxs_tneqx_fwd_step_sn
-cpxs_trans
-cpx_subst
-cpxs_zeta
-cpxs_zeta_dx
-cpx_teqx_conf
-cpx_teqx_conf_rex
-cpx_theta
-cpx_zeta
-csx
-csx_abbr
-csx_abst
-csx_appl_beta
-csx_appl_beta_aux
-csx_appl_simple
-csx_appl_simple_teqo
-csx_appl_theta
-csx_appl_theta_aux
-csx_applv_beta
-csx_applv_cast
-csx_applv_cnx
-csx_applv_delta_drops
-csx_applv_sort
-csx_applv_theta
-csx_bind
-csx_cast
-csx_cpcs_dec
-csx_cpxs_trans
-csx_cpx_trans
-csx_feqx_conf
-csx_fpbq_conf
-csx_fqu_conf
-csx_fqup_conf
-csx_fquq_conf
-csx_fqus_conf
-csx_fsb
-csx_fsb_fpbs
-csx_fwd_applv
-csx_fwd_bind
-csx_fwd_bind_dx
-csx_fwd_bind_dx_aux
-csx_fwd_bind_dx_unit
-csx_fwd_bind_dx_unit_aux
-csx_fwd_bind_unit
-csx_fwd_flat
-csx_fwd_flat_dx
-csx_fwd_flat_dx_aux
-csx_fwd_pair_sn
-csx_fwd_pair_sn_aux
-csx_gcp
-csx_gcr
-csx_ind
-csx_ind_cpxs
-csx_ind_cpxs_teqx
-csx_ind_fpb
-csx_ind_fpbg
-csx_intro
-csx_intro_cpxs
-csx_inv_lifts
-csx_inv_lref_drops
-csx_inv_lref_pair_drops
-csx_lifts
-csx_lpx_conf
-csx_lpxs_conf
-csx_lref_pair_drops
-csx_lsubr_conf
-csx_reqx_conf
-csx_reqx_trans
-csx_rsx
-csx_sort
-csx_teqx_trans
-csxv
-csxv_inv_cons
-drops_lprs_trans
-drops_lpr_trans
-drops_lpxs_trans
-drops_lpx_trans
-feqx_cpxs_trans
-feqx_cpx_trans
-feqx_fpbg_trans
-feqx_fpbs
-feqx_fpbs_trans
-feqx_fpb_trans
-feqx_lpxs_trans
-fleq_rpx
-fpb
-fpb_cpx
-fpb_fpbg
-fpb_fpbg_trans
-fpb_fpbq
-fpb_fpbq_fneqx
-fpb_fpbs
-fpb_fqu
-fpbg
-fpbg_cpms_trans
-fpbg_feqx_trans
-fpbg_fpbq_trans
-fpbg_fpbs_trans
-fpbg_fqu_trans
-fpbg_fwd_fpbs
-fpbg_teqx_div
-fpbg_trans
-fpb_inv_feqx
-fpb_lpx
-fpbq
-fpbq_aaa_conf
-fpbq_cpx
-fpbq_feqx
-fpbq_fneqx_inv_fpb
-fpbq_fpbg_trans
-fpbq_fpbs
-fpbq_fquq
-fpbq_inv_fpb
-fpbq_lpx
-fpbq_refl
-fpbs
-fpbs_aaa_conf
-fpbs_cpxs_teqx_fqup_lpx_trans
-fpbs_cpxs_trans
-fpbs_cpx_tneqx_trans
-fpbs_csx_conf
-fpbs_feqx_trans
-fpbs_fpbg_trans
-fpbs_fpb_trans
-fpbs_fqup_trans
-fpbs_fqus_trans
-fpbs_ind
-fpbs_ind_dx
-fpbs_intro_star
-fpbs_inv_fpbg
-fpbs_inv_star
-fpbs_lpxs_trans
-fpbs_lpx_trans
-fpbs_refl
-fpbs_strap1
-fpbs_strap2
-fpbs_teqx_trans
-fpbs_trans
-fqu_cpr_trans_dx
-fqu_cpr_trans_sn
-fqu_cpxs_trans
-fqu_cpxs_trans_tneqx
-fqu_cpx_trans
-fqu_cpx_trans_tneqx
-fqu_lpr_trans
-fqu_lpx_trans
-fqup_cpms_fwd_fpbg
-fqup_cpxs_trans
-fqup_cpxs_trans_tneqx
-fqup_cpx_trans
-fqup_cpx_trans_tneqx
-fqup_fpbg
-fqup_fpbg_trans
-fqup_fpbs
-fqup_fpbs_trans
-fquq_cpr_trans_dx
-fquq_cpr_trans_sn
-fquq_cpxs_trans
-fquq_cpxs_trans_tneqx
-fquq_cpx_trans
-fquq_cpx_trans_tneqx
-fquq_lpr_trans
-fquq_lpx_trans
-fqus_cpxs_trans
-fqus_cpxs_trans_tneqx
-fqus_cpx_trans
-fqus_cpx_trans_tneqx
-fqus_fpbs
-fqus_fpbs_trans
-fqus_lpxs_fpbs
-fsb
-fsb_feqx_trans
-fsb_fpbg_refl_false
-fsb_fpbs_trans
-fsb_ind_alt
-fsb_ind_fpbg
-fsb_ind_fpbg_fpbs
-fsb_intro
-fsb_intro_fpbg
-fsb_inv_csx
-IH_cnv_cpm_conf_lpr
-IH_cnv_cpms_conf_lpr
-IH_cnv_cpms_strip_lpr
-IH_cnv_cpms_trans_lpr
-IH_cnv_cpm_teqx_conf_lpr
-IH_cnv_cpm_teqx_cpm_trans
-IH_cnv_cpm_trans_lpr
-IH_cpr_conf_lpr
-jsx
-jsx_atom
-jsx_bind
-jsx_csx_conf
-jsx_fwd_bind_sn
-jsx_fwd_drops_atom_sn
-jsx_fwd_drops_pair_sn
-jsx_fwd_drops_unit_sn
-jsx_fwd_lsubr
-jsx_inv_atom_sn
-jsx_inv_atom_sn_aux
-jsx_inv_bind_sn
-jsx_inv_bind_sn_aux
-jsx_inv_pair_sn
-jsx_inv_void_sn
-jsx_pair
-jsx_refl
-jsx_trans
-lfsx_atom
-lpr
-lpr_aaa_conf
-lpr_bind
-lpr_bind_refl_dx
-lpr_conf
-lpr_cpcs_conf
-lpr_cpcs_trans
-lpr_cpms_trans
-lpr_cpm_trans
-lpr_cpr_conf
-lpr_cpr_conf_dx
-lpr_cpr_conf_sn
-lpr_cprs_conf
-lpr_cprs_trans
-lpr_cpr_trans
-lpr_drops_conf
-lpr_drops_trans
-lpr_fpb
-lpr_fpbq
-lpr_fquq_trans
-lpr_fqu_trans
-lpr_fwd_length
-lpr_fwd_lpx
-lpr_inv_atom_dx
-lpr_inv_atom_sn
-lpr_inv_bind_dx
-lpr_inv_bind_sn
-lpr_inv_pair
-lpr_inv_pair_dx
-lpr_inv_pair_sn
-lpr_inv_unit_dx
-lpr_inv_unit_sn
-lpr_lprs
-lpr_pair
-lpr_refl
-lprs
-lprs_aaa_conf
-lprs_bind_refl_dx
-lprs_conf
-lprs_cpcs_trans
-lprs_cpms_trans
-lprs_cpm_trans
-lprs_cpr_conf_dx
-lprs_cpr_conf_sn
-lprs_cprs_conf
-lprs_cprs_conf_dx
-lprs_cprs_conf_sn
-lprs_CTC
-lprs_drops_conf
-lprs_drops_trans
-lprs_fwd_length
-lprs_fwd_lpxs
-lprs_ind
-lprs_ind_dx
-lprs_ind_sn
-lprs_inv_atom_dx
-lprs_inv_atom_sn
-lprs_inv_CTC
-lprs_inv_pair_dx
-lprs_inv_pair_sn
-lprs_inv_TC
-lprs_pair
-lprs_pair_dx
-lprs_refl
-lprs_step_dx
-lprs_step_sn
-lprs_strip
-lprs_TC
-lprs_trans
-lpx
-lpx_aaa_conf
-lpx_bind
-lpx_bind_refl_dx
-lpx_cpx_conf_fsge
-lpx_cpxs_trans
-lpx_cpx_trans
-lpx_drops_conf
-lpx_drops_trans
-lpx_fqup_trans
-lpx_fquq_trans
-lpx_fqus_trans
-lpx_fqu_trans
-lpx_fsge_comp
-lpx_fwd_length
-lpx_inv_atom_dx
-lpx_inv_atom_sn
-lpx_inv_bind_dx
-lpx_inv_bind_sn
-lpx_inv_pair
-lpx_inv_pair_dx
-lpx_inv_pair_sn
-lpx_inv_unit_dx
-lpx_inv_unit_sn
-lpx_lpxs
-lpx_pair
-lpx_refl
-lpx_rpx
-lpxs
-lpxs_aaa_conf
-lpxs_bind_refl_dx
-lpxs_cpxs_trans
-lpxs_cpx_trans
-lpxs_drops_conf
-lpxs_drops_trans
-lpxs_feqx_fpbs
-lpxs_fpbs
-lpxs_fpbs_trans
-lpxs_fwd_length
-lpxs_ind
-lpxs_ind_dx
-lpxs_ind_sn
-lpxs_inv_atom_dx
-lpxs_inv_atom_sn
-lpxs_inv_bind_sn
-lpxs_inv_pair_dx
-lpxs_inv_pair_sn
-lpxs_pair
-lpxs_pair_dx
-lpxs_refl
-lpxs_rneqx_fpbg
-lpxs_rneqx_inv_step_sn
-lpxs_step_dx
-lpxs_step_sn
-lpxs_trans
-lsubr_cpcs_trans
-lsubr_cpg_trans
-lsubr_cpms_trans
-lsubr_cpm_trans
-lsubr_cpxs_trans
-lsubr_cpx_trans
-lsubsv_fwd_lsuba
-lsubv
-lsubv_atom
-lsubv_beta
-lsubv_bind
-lsubv_cnv_trans
-lsubv_cpcs_trans
-lsubv_cpms_trans
-lsubv_drops_conf_isuni
-lsubv_drops_trans_isuni
-lsubv_fwd_lsubr
-lsubv_inv_abst_sn
-lsubv_inv_atom_dx
-lsubv_inv_atom_dx_aux
-lsubv_inv_atom_sn
-lsubv_inv_atom_sn_aux
-lsubv_inv_bind_dx
-lsubv_inv_bind_dx_aux
-lsubv_inv_bind_sn
-lsubv_inv_bind_sn_aux
-lsubv_refl
-lsubv_trans
-nta
-nta_abst_predicative
-nta_abst_repellent
-nta_appl
-nta_appl_abst
-nta_appl_ntas_pos
-nta_appl_ntas_zero
-nta_bind_cnv
-nta_cast
-nta_cast_old
-nta_conv
-nta_conv_cnv
-nta_cpcs_bi
-nta_cpcs_conf
-nta_cpcs_conf_cnv
-nta_cpr_conf
-nta_cpr_conf_lpr
-nta_cprs_conf
-nta_cprs_trans
-nta_fwd_aaa
-nta_fwd_cnv_dx
-nta_fwd_cnv_sn
-nta_fwd_correct
-nta_fwd_fsb
-nta_ind_cnv
-nta_ind_ext_cnv
-nta_ind_ext_cnv_mixed
-nta_ind_rest_cnv
-nta_inference_dec
-nta_inv_abst_bi_cnv
-nta_inv_appl_sn
-nta_inv_appl_sn_ntas
-nta_inv_bind_sn_cnv
-nta_inv_cast_sn
-nta_inv_cast_sn_old
-nta_inv_gref_sn
-nta_inv_ldec_sn_cnv
-nta_inv_ldef_sn
-nta_inv_lifts_sn
-nta_inv_lref_sn
-nta_inv_lref_sn_drops_cnv
-nta_inv_pure_sn_cnv
-nta_inv_sort_sn
-nta_ldec_cnv
-nta_ldec_drops_cnv
-nta_ldef
-nta_ldef_drops
-nta_lifts_bi
-nta_lifts_sn
-nta_lpr_conf
-nta_lprs_conf
-nta_lref
-nta_mono
-nta_ntas
-nta_pure_cnv
-ntas
-ntas_bind_cnv
-ntas_fwd_cnv_dx
-ntas_fwd_cnv_sn
-ntas_ind_bi_nta
-ntas_intro
-ntas_inv_appl_sn
-ntas_inv_nta
-ntas_inv_plus
-ntas_inv_zero
-nta_sort
-ntas_refl
-ntas_sort
-ntas_step_dx
-ntas_step_sn
-ntas_trans
-ntas_zero
-nta_typecheck
-nta_typecheck_dec
-R_cpmuwe
-R_cpmuwe_total_csx
-req_cpx_trans
-reqx_cpxs_trans
-reqx_cpx_trans
-reqx_fpb_trans
-reqx_lpxs_trans
-reqx_lpx_trans
-reqx_rpx_trans
-rpr_fsge_comp
-rpx
-rpx_atom
-rpx_bind
-rpx_bind_dx_split
-rpx_bind_dx_split_void
-rpx_bind_repl_dx
-rpx_bind_void
-rpx_cpx_conf
-rpx_cpx_conf_fsge
-rpx_cpx_conf_fsge_dx
-rpx_flat
-rpx_flat_dx_split
-rpx_fsge_comp
-rpx_fwd_bind_dx
-rpx_fwd_bind_dx_void
-rpx_fwd_flat_dx
-rpx_fwd_length
-rpx_fwd_pair_sn
-rpx_gref
-rpx_inv_atom_dx
-rpx_inv_atom_sn
-rpx_inv_bind
-rpx_inv_bind_void
-rpx_inv_flat
-rpx_inv_gref
-rpx_inv_gref_bind_dx
-rpx_inv_gref_bind_sn
-rpx_inv_lifts_bi
-rpx_inv_lifts_dx
-rpx_inv_lifts_sn
-rpx_inv_lpx_req
-rpx_inv_lref
-rpx_inv_lref_bind_dx
-rpx_inv_lref_bind_sn
-rpx_inv_sort
-rpx_inv_sort_bind_dx
-rpx_inv_sort_bind_sn
-rpx_inv_zero_length
-rpx_inv_zero_pair_dx
-rpx_inv_zero_pair_sn
-rpx_lifts_sn
-rpx_lref
-rpx_pair
-rpx_pair_refl
-rpx_pair_sn_split
-rpx_refl
-rpx_reqx_conf
-rpx_sort
-rpx_teqx_conf
-rpx_teqx_div
-rsx
-rsx_bind
-rsx_bind_lpxs_aux
-rsx_bind_lpxs_void_aux
-rsx_bind_void
-rsx_cpxs_trans
-rsx_cpx_trans
-rsx_cpx_trans_jsx
-rsx_flat
-rsx_flat_lpxs
-rsx_fwd_bind_dx_void
-rsx_fwd_flat_dx
-rsx_fwd_lref_pair_csx
-rsx_fwd_lref_pair_csx_aux
-rsx_fwd_lref_pair_csx_drops
-rsx_fwd_lref_pair_drops
-rsx_fwd_pair
-rsx_fwd_pair_aux
-rsx_fwd_pair_sn
-rsx_gref
-rsx_ind
-rsx_ind_lpxs
-rsx_ind_lpxs_reqx
-rsx_intro
-rsx_intro_lpxs
-rsx_inv_bind_void
-rsx_inv_flat
-rsx_inv_lifts
-rsx_inv_lref_drops
-rsx_inv_lref_pair
-rsx_inv_lref_pair_drops
-rsx_jsx_trans
-rsx_lifts
-rsx_lpxs_trans
-rsx_lpx_trans
-rsx_lref_atom_drops
-rsx_lref_pair
-rsx_lref_pair_drops
-rsx_lref_pair_lpxs
-rsx_lref_unit_drops
-rsx_reqx_trans
-rsx_sort
-rsx_unit
-teqx_cpxs_trans
-teqx_cpx_trans
-teqx_fpbs_trans
-teqx_fpb_trans
-teqx_reqx_lpx_fpbs
+"aaa_cpm_SO"
+"aaa_csx"
+"aaa_fsb"
+"aaa_ind_csx"
+"aaa_ind_csx_aux"
+"aaa_ind_csx_cpxs"
+"aaa_ind_csx_cpxs_aux"
+"aaa_ind_fpb"
+"aaa_ind_fpb_aux"
+"aaa_ind_fpbg"
+"aaa_ind_fpbg_aux"
+"cnr"
+"cnr_abbr_neg"
+"cnr_abst"
+"cnr_appl_simple"
+"cnr_dec_teqx"
+"cnr_gref"
+"cnr_inv_abbr_neg"
+"cnr_inv_abst"
+"cnr_inv_appl"
+"cnr_inv_cast"
+"cnr_inv_lifts"
+"cnr_inv_lref_abbr"
+"cnr_lifts"
+"cnr_lref_abst"
+"cnr_lref_atom"
+"cnr_lref_unit"
+"cnr_sort"
+"cnuw"
+"cnuw_abbr_neg"
+"cnuw_abst"
+"cnuw_appl_simple"
+"cnuw_atom_drops"
+"cnuw_cpms_trans"
+"cnuw_ctop"
+"cnuw_dec"
+"cnuw_dec_ex"
+"cnuw_fwd_appl"
+"cnuw_gref"
+"cnuw_inv_abbr_pos"
+"cnuw_inv_cast"
+"cnuw_inv_lifts"
+"cnuw_inv_zero_pair"
+"cnuw_lifts"
+"cnuw_lref"
+"cnuw_sort"
+"cnuw_unit_drops"
+"cnuw_zero_unit"
+"cnv"
+"cnv_acle_omega"
+"cnv_acle_one"
+"cnv_acle_trans"
+"cnv_appl"
+"cnv_appl_cpes"
+"cnv_appl_cpts"
+"cnv_appl_ge"
+"cnv_appl_ntas_ge"
+"cnv_bind"
+"cnv_cast"
+"cnv_cast_cpes"
+"cnv_cast_cpts"
+"cnv_cpcs_dec"
+"cnv_cpes_dec"
+"cnv_cpm_conf_lpr_appl_appl_aux"
+"cnv_cpm_conf_lpr_appl_beta_aux"
+"cnv_cpm_conf_lpr_appl_theta_aux"
+"cnv_cpm_conf_lpr_atom_atom_aux"
+"cnv_cpm_conf_lpr_atom_delta_aux"
+"cnv_cpm_conf_lpr_atom_ell_aux"
+"cnv_cpm_conf_lpr_atom_ess_aux"
+"cnv_cpm_conf_lpr_aux"
+"cnv_cpm_conf_lpr_beta_beta_aux"
+"cnv_cpm_conf_lpr_bind_bind_aux"
+"cnv_cpm_conf_lpr_bind_zeta_aux"
+"cnv_cpm_conf_lpr_cast_cast_aux"
+"cnv_cpm_conf_lpr_cast_ee_aux"
+"cnv_cpm_conf_lpr_cast_epsilon_aux"
+"cnv_cpm_conf_lpr_delta_delta_aux"
+"cnv_cpm_conf_lpr_delta_ell_aux"
+"cnv_cpm_conf_lpr_ee_ee_aux"
+"cnv_cpm_conf_lpr_epsilon_ee_aux"
+"cnv_cpm_conf_lpr_epsilon_epsilon_aux"
+"cnv_cpm_conf_lpr_sub"
+"cnv_cpm_conf_lpr_theta_theta_aux"
+"cnv_cpm_conf_lpr_zeta_zeta_aux"
+"cnv_cpmre_cpms_conf"
+"cnv_cpmre_mono"
+"cnv_cpmre_trans"
+"cnv_cpms_conf"
+"cnv_cpms_conf_eq"
+"cnv_cpms_conf_lpr"
+"cnv_cpms_conf_lpr_aux"
+"cnv_cpms_conf_lpr_refl_tneqx_sub"
+"cnv_cpms_conf_lpr_step_tneqx_sub"
+"cnv_cpms_conf_lpr_teqx_teqx_aux"
+"cnv_cpms_conf_lpr_teqx_tneqx_aux"
+"cnv_cpms_conf_lpr_tneqx_tneqx_aux"
+"cnv_cpms_fwd_appl_sn_decompose"
+"cnv_cpms_nta"
+"cnv_cpms_ntas"
+"cnv_cpms_strip_lpr_sub"
+"cnv_cpms_teqx_conf_lpr_aux"
+"cnv_cpms_teqx_strip_lpr_aux"
+"cnv_cpms_trans"
+"cnv_cpms_trans_lpr"
+"cnv_cpms_trans_lpr_sub"
+"cnv_cpm_teqx_conf_lpr"
+"cnv_cpm_teqx_conf_lpr_appl_appl_aux"
+"cnv_cpm_teqx_conf_lpr_atom_atom_aux"
+"cnv_cpm_teqx_conf_lpr_atom_ess_aux"
+"cnv_cpm_teqx_conf_lpr_aux"
+"cnv_cpm_teqx_conf_lpr_bind_bind_aux"
+"cnv_cpm_teqx_conf_lpr_cast_cast_aux"
+"cnv_cpm_teqx_cpm_trans_aux"
+"cnv_cpm_teqx_cpm_trans_sub"
+"cnv_cpm_trans"
+"cnv_cpm_trans_lpr"
+"cnv_cpm_trans_lpr_aux"
+"cnv_cpmuwe_mono"
+"cnv_cpmuwe_trans"
+"cnv_cpr_teqx_fwd_refl"
+"cnv_dec"
+"cnv_fpbg_refl_false"
+"cnv_fqu_conf"
+"cnv_fqup_conf"
+"cnv_fquq_conf"
+"cnv_fqus_conf"
+"cnv_fwd_aaa"
+"cnv_fwd_cpms_abst_dx_le"
+"cnv_fwd_cpm_SO"
+"cnv_fwd_cpms_total"
+"cnv_fwd_csx"
+"cnv_fwd_flat"
+"cnv_fwd_fsb"
+"cnv_fwd_pair_sn"
+"cnv_ind_cpes"
+"cnv_inv_appl"
+"cnv_inv_appl_aux"
+"cnv_inv_appl_cpes"
+"cnv_inv_appl_cpts"
+"cnv_inv_appl_ntas"
+"cnv_inv_bind"
+"cnv_inv_bind_aux"
+"cnv_inv_cast"
+"cnv_inv_cast_aux"
+"cnv_inv_cast_cpes"
+"cnv_inv_cast_cpts"
+"cnv_inv_gref"
+"cnv_inv_gref_aux"
+"cnv_inv_lifts"
+"cnv_inv_lref"
+"cnv_inv_lref_atom"
+"cnv_inv_lref_aux"
+"cnv_inv_lref_drops"
+"cnv_inv_lref_pair"
+"cnv_inv_lref_unit"
+"cnv_inv_zero"
+"cnv_inv_zero_aux"
+"cnv_lifts"
+"cnv_lprs_trans"
+"cnv_lpr_trans"
+"cnv_lref"
+"cnv_lref_drops"
+"cnv_nta_sn"
+"cnv_preserve"
+"cnv_R_cpmuwe_dec"
+"cnv_R_cpmuwe_total"
+"cnv_sort"
+"cnv_zero"
+"cnx"
+"cnx_abst"
+"cnx_appl_simple"
+"cnx_csx"
+"cnx_inv_abbr_neg"
+"cnx_inv_abbr_pos"
+"cnx_inv_abst"
+"cnx_inv_appl"
+"cnx_inv_cast"
+"cnx_inv_lifts"
+"cnx_inv_lref_pair"
+"cnx_lifts"
+"cnx_lref_atom"
+"cnx_lref_unit"
+"cnx_sort"
+"cnx_teqx_trans"
+"cpc"
+"cpc_conf"
+"cpc_cpcs"
+"cpc_fwd_cpr"
+"cpc_refl"
+"cpcs"
+"cpcs_aaa_mono"
+"cpcs_bind1"
+"cpcs_bind2"
+"cpcs_bind_dx"
+"cpcs_bind_sn"
+"cpcs_canc_dx"
+"cpcs_canc_sn"
+"cpcs_cpr_conf"
+"cpcs_cpr_div"
+"cpcs_cprs_conf"
+"cpcs_cprs_div"
+"cpcs_cprs_dx"
+"cpcs_cprs_sn"
+"cpcs_cprs_step_dx"
+"cpcs_cprs_step_sn"
+"cpcs_cpr_step_dx"
+"cpcs_cpr_step_sn"
+"cpcs_flat"
+"cpcs_flat_dx_cpr_rev"
+"cpcs_ind_dx"
+"cpcs_ind_sn"
+"cpcs_inv_abst_bi_dx"
+"cpcs_inv_abst_bi_sn"
+"cpcs_inv_abst_dx"
+"cpcs_inv_abst_sn"
+"cpcs_inv_cprs"
+"cpcs_inv_lifts_bi"
+"cpcs_inv_sort_abst"
+"cpcs_inv_sort_bi"
+"cpcs_lifts_bi"
+"cpcs_refl"
+"cpcs_step_dx"
+"cpcs_step_sn"
+"cpcs_strip"
+"cpcs_sym"
+"cpcs_trans"
+"cpc_sym"
+"cpes"
+"cpes_aaa_mono"
+"cpes_cpes_trans"
+"cpes_cpms_div"
+"cpes_cprs_trans"
+"cpes_fwd_abst_bi"
+"cpes_refl"
+"cpes_refl_aaa"
+"cpes_sym"
+"cpg"
+"cpg_appl"
+"cpg_atom"
+"cpg_beta"
+"cpg_bind"
+"cpg_cast"
+"cpg_cpx"
+"cpg_delta"
+"cpg_delta_drops"
+"cpg_ee"
+"cpg_ell"
+"cpg_ell_drops"
+"cpg_eps"
+"cpg_ess"
+"cpg_fwd_bind1_minus"
+"cpg_inv_abbr1"
+"cpg_inv_abst1"
+"cpg_inv_appl1"
+"cpg_inv_appl1_aux"
+"cpg_inv_appl1_simple"
+"cpg_inv_atom1"
+"cpg_inv_atom1_aux"
+"cpg_inv_atom1_drops"
+"cpg_inv_bind1"
+"cpg_inv_bind1_aux"
+"cpg_inv_cast1"
+"cpg_inv_cast1_aux"
+"cpg_inv_gref1"
+"cpg_inv_lifts_bi"
+"cpg_inv_lifts_sn"
+"cpg_inv_lref1"
+"cpg_inv_lref1_bind"
+"cpg_inv_lref1_drops"
+"cpg_inv_sort1"
+"cpg_inv_zero1"
+"cpg_inv_zero1_pair"
+"cpg_lifts_bi"
+"cpg_lifts_sn"
+"cpg_lref"
+"cpg_refl"
+"cpg_theta"
+"cpg_zeta"
+"cpm"
+"cpm_aaa_conf"
+"cpm_appl"
+"cpm_beta"
+"cpm_bind"
+"cpm_bind2"
+"cpm_bind_unit"
+"cpm_cast"
+"cpm_cpms"
+"cpm_delta"
+"cpm_delta_drops"
+"cpm_ee"
+"cpm_ell"
+"cpm_ell_drops"
+"cpm_eps"
+"cpm_ess"
+"cpm_fpb"
+"cpm_fpbq"
+"cpm_fsge_comp"
+"cpm_fwd_bind1_minus"
+"cpm_fwd_cpx"
+"cpm_fwd_plus"
+"cpm_fwd_plus_aux"
+"cpm_ind"
+"cpm_inv_abbr1"
+"cpm_inv_abst1"
+"cpm_inv_abst_bi"
+"cpm_inv_appl1"
+"cpm_inv_appl1_simple"
+"cpm_inv_atom1"
+"cpm_inv_atom1_drops"
+"cpm_inv_bind1"
+"cpm_inv_cast1"
+"cpm_inv_gref1"
+"cpm_inv_lifts_bi"
+"cpm_inv_lifts_sn"
+"cpm_inv_lref1"
+"cpm_inv_lref1_ctop"
+"cpm_inv_lref1_drops"
+"cpm_inv_sort1"
+"cpm_inv_zero1"
+"cpm_inv_zero1_unit"
+"cpm_lifts_bi"
+"cpm_lifts_sn"
+"cpm_lref"
+"cpmre"
+"cpmre_fwd_cpms"
+"cpmre_intro"
+"cpmre_total_aaa"
+"cpm_rex_conf"
+"cpms"
+"cpms_aaa_conf"
+"cpms_abst_dx_le_aaa"
+"cpms_appl"
+"cpms_appl_dx"
+"cpms_beta"
+"cpms_beta_dx"
+"cpms_beta_rc"
+"cpms_bind"
+"cpms_bind2_dx"
+"cpms_bind_alt"
+"cpms_bind_dx"
+"cpms_cast"
+"cpms_cast_sn"
+"cpms_cprre_trans"
+"cpms_cprs_trans"
+"cpms_delta"
+"cpms_delta_drops"
+"cpms_div"
+"cpms_ee"
+"cpms_ell"
+"cpms_ell_drops"
+"cpms_eps"
+"cpms_fpbg_trans"
+"cpms_fwd_cpxs"
+"cpms_fwd_fpbs"
+"cpms_ind_dx"
+"cpms_ind_sn"
+"cpms_inv_abbr_abst"
+"cpms_inv_abbr_sn_dx"
+"cpms_inv_abst_bi"
+"cpms_inv_abst_sn"
+"cpms_inv_abst_sn_cprs"
+"cpms_inv_appl_sn"
+"cpms_inv_cast1"
+"cpms_inv_delta_sn"
+"cpms_inv_ell_sn"
+"cpms_inv_gref1"
+"cpms_inv_lifts_bi"
+"cpms_inv_lifts_sn"
+"cpms_inv_lref1_ctop"
+"cpms_inv_lref1_drops"
+"cpms_inv_lref_sn"
+"cpms_inv_plus"
+"cpms_inv_sort1"
+"cpms_inv_succ_sn"
+"cpms_inv_zero1_unit"
+"cpms_lifts_bi"
+"cpms_lifts_sn"
+"cpms_lref"
+"cpm_sort"
+"cpms_reqx_conf_dx"
+"cpms_reqx_conf_sn"
+"cpms_sort"
+"cpms_step_dx"
+"cpms_step_sn"
+"cpms_teqx_ind_sn"
+"cpms_theta"
+"cpms_theta_dx"
+"cpms_theta_rc"
+"cpms_tneqx_fwd_fpbg"
+"cpms_tneqx_fwd_step_sn_aux"
+"cpms_total_aaa"
+"cpms_trans"
+"cpms_trans_swap"
+"cpms_zeta"
+"cpms_zeta_dx"
+"cpm_teqx_free"
+"cpm_teqx_ind"
+"cpm_teqx_inv_appl_sn"
+"cpm_teqx_inv_atom_sn"
+"cpm_teqx_inv_bind_dx"
+"cpm_teqx_inv_bind_sn"
+"cpm_teqx_inv_bind_sn_void"
+"cpm_teqx_inv_cast_sn"
+"cpm_teqx_inv_lref_sn"
+"cpm_theta"
+"cpm_tneqx_cpm_cpms_teqx_sym_fwd_fpbg"
+"cpm_tneqx_cpm_fpbg"
+"cpmuwe"
+"cpmuwe_abbr_neg"
+"cpmuwe_abst"
+"cpmuwe_ctop"
+"cpmuwe_fwd_cpms"
+"cpmuwe_gref"
+"cpmuwe_intro"
+"cpmuwe_sort"
+"cpmuwe_total_csx"
+"cpmuwe_zero_unit"
+"cpm_zeta"
+"cpr_abbr_pos_tneqx"
+"cpr_conf"
+"cpr_conf_lpr"
+"cpr_conf_lpr_atom_atom"
+"cpr_conf_lpr_atom_delta"
+"cpr_conf_lpr_beta_beta"
+"cpr_conf_lpr_bind_bind"
+"cpr_conf_lpr_bind_zeta"
+"cpr_conf_lpr_delta_delta"
+"cpr_conf_lpr_eps_eps"
+"cpr_conf_lpr_flat_beta"
+"cpr_conf_lpr_flat_eps"
+"cpr_conf_lpr_flat_flat"
+"cpr_conf_lpr_flat_theta"
+"cpr_conf_lpr_theta_theta"
+"cpr_conf_lpr_zeta_zeta"
+"cpr_cpcs_dx"
+"cpr_cpcs_sn"
+"cpr_cprs_conf_cpcs"
+"cpr_cprs_div"
+"cpr_div"
+"cpr_ext"
+"cpr_flat"
+"cpr_ind"
+"cpr_inv_atom1"
+"cpr_inv_atom1_drops"
+"cpr_inv_cast1"
+"cpr_inv_flat1"
+"cpr_inv_gref1"
+"cpr_inv_lref1"
+"cpr_inv_lref1_drops"
+"cpr_inv_sort1"
+"cpr_inv_zero1"
+"cpr_pair_sn"
+"cprre_cprs_conf"
+"cpr_refl"
+"cprre_mono"
+"cprre_total_csx"
+"cprs_abbr_pos_twneq"
+"cprs_conf"
+"cprs_conf_cpcs"
+"cprs_cpr_conf_cpcs"
+"cprs_cpr_div"
+"cprs_CTC"
+"cprs_div"
+"cprs_ext"
+"cprs_flat"
+"cprs_flat_dx"
+"cprs_flat_sn"
+"cprs_ind_dx"
+"cprs_ind_sn"
+"cprs_inv_appl_sn"
+"cprs_inv_cast1"
+"cprs_inv_cnr_sn"
+"cprs_inv_CTC"
+"cprs_inv_lref1_drops"
+"cprs_inv_sort1"
+"cprs_lpr_conf_dx"
+"cprs_lpr_conf_sn"
+"cprs_nta_trans"
+"cprs_nta_trans_cnv"
+"cprs_refl"
+"cprs_step_dx"
+"cprs_step_sn"
+"cprs_strip"
+"cprs_trans"
+"cpr_subst"
+"cpt"
+"cpt_appl"
+"cpt_bind"
+"cpt_cast"
+"cpt_cpts"
+"cpt_delta"
+"cpt_delta_drops"
+"cpt_ee"
+"cpt_ell"
+"cpt_ell_drops"
+"cpt_ess"
+"cpt_fwd_cpm"
+"cpt_fwd_plus"
+"cpt_fwd_plus_aux"
+"cpt_ind"
+"cpt_inv_appl_sn"
+"cpt_inv_atom_sn"
+"cpt_inv_atom_sn_drops"
+"cpt_inv_bind_sn"
+"cpt_inv_cast_sn"
+"cpt_inv_gref_sn"
+"cpt_inv_lifts_bi"
+"cpt_inv_lifts_sn"
+"cpt_inv_lref_sn"
+"cpt_inv_lref_sn_ctop"
+"cpt_inv_lref_sn_drops"
+"cpt_inv_sort_sn"
+"cpt_inv_zero_sn"
+"cpt_inv_zero_sn_unit"
+"cpt_lifts_bi"
+"cpt_lifts_sn"
+"cpt_lref"
+"cpt_refl"
+"cpts"
+"cpts_appl_dx"
+"cpts_bind_dx"
+"cpts_cast_sn"
+"cpts_cpms_conf_eq"
+"cpts_cprs_trans"
+"cpts_delta"
+"cpts_delta_drops"
+"cpts_ee"
+"cpts_ell"
+"cpts_ell_drops"
+"cpts_fwd_cpms"
+"cpts_ind_dx"
+"cpts_ind_sn"
+"cpts_inv_cast_sn"
+"cpts_inv_delta_sn"
+"cpts_inv_ell_sn"
+"cpts_inv_gref_sn"
+"cpts_inv_lifts_bi"
+"cpts_inv_lifts_sn"
+"cpts_inv_lref_sn"
+"cpts_inv_lref_sn_ctop"
+"cpts_inv_lref_sn_drops"
+"cpts_inv_sort_sn"
+"cpts_inv_succ_sn"
+"cpts_inv_zero_sn_unit"
+"cpts_lifts_bi"
+"cpts_lifts_sn"
+"cpts_lref"
+"cpt_sort"
+"cpts_refl"
+"cpts_sort"
+"cpts_step_dx"
+"cpts_step_sn"
+"cpts_total_aaa"
+"cpx"
+"cpx_aaa_conf"
+"cpx_aaa_conf_lpx"
+"cpx_beta"
+"cpx_bind"
+"cpx_bind2"
+"cpx_bind_unit"
+"cpx_cpxs"
+"cpx_delta"
+"cpx_delta_drops"
+"cpx_ee"
+"cpx_eps"
+"cpx_ess"
+"cpx_ext"
+"cpx_flat"
+"cpx_fsge_comp"
+"cpx_fwd_bind1_minus"
+"cpx_ind"
+"cpx_inv_abbr1"
+"cpx_inv_abst1"
+"cpx_inv_appl1"
+"cpx_inv_appl1_simple"
+"cpx_inv_atom1"
+"cpx_inv_atom1_drops"
+"cpx_inv_bind1"
+"cpx_inv_cast1"
+"cpx_inv_flat1"
+"cpx_inv_gref1"
+"cpx_inv_lifts_bi"
+"cpx_inv_lifts_sn"
+"cpx_inv_lref1"
+"cpx_inv_lref1_bind"
+"cpx_inv_lref1_drops"
+"cpx_inv_sort1"
+"cpx_inv_zero1"
+"cpx_inv_zero1_pair"
+"cpx_lifts_bi"
+"cpx_lifts_sn"
+"cpx_lref"
+"cpx_pair_sn"
+"cpx_refl"
+"cpx_req_conf_sn"
+"cpx_reqx_conf"
+"cpx_reqx_conf_dx"
+"cpx_reqx_conf_sn"
+"cpx_rex_conf"
+"cpxs"
+"cpxs_aaa_conf"
+"cpxs_beta"
+"cpxs_beta_dx"
+"cpxs_beta_rc"
+"cpxs_bind"
+"cpxs_bind2_dx"
+"cpxs_bind_alt"
+"cpxs_bind_dx"
+"cpxs_cnx"
+"cpxs_delta"
+"cpxs_delta_drops"
+"cpxs_ee"
+"cpxs_eps"
+"cpxs_ext"
+"cpxs_flat"
+"cpxs_flat_dx"
+"cpxs_flat_sn"
+"cpxs_fpbg_trans"
+"cpxs_fpbs"
+"cpxs_fpbs_trans"
+"cpxs_fqup_fpbs"
+"cpxs_fqus_fpbs"
+"cpxs_fqus_lpxs_fpbs"
+"cpxs_fwd_beta"
+"cpxs_fwd_beta_vector"
+"cpxs_fwd_cast"
+"cpxs_fwd_cast_vector"
+"cpxs_fwd_cnx"
+"cpxs_fwd_cnx_vector"
+"cpxs_fwd_delta_drops"
+"cpxs_fwd_delta_drops_vector"
+"cpxs_fwd_sort"
+"cpxs_fwd_sort_vector"
+"cpxs_fwd_theta"
+"cpxs_fwd_theta_vector"
+"cpxs_ind"
+"cpxs_ind_dx"
+"cpxs_inv_abbr1_dx"
+"cpxs_inv_abst1"
+"cpxs_inv_appl1"
+"cpxs_inv_cast1"
+"cpxs_inv_cnx1"
+"cpxs_inv_lifts_bi"
+"cpxs_inv_lifts_sn"
+"cpxs_inv_lref1"
+"cpxs_inv_lref1_drops"
+"cpxs_inv_sort1"
+"cpxs_inv_zero1"
+"cpxs_lifts_bi"
+"cpxs_lifts_sn"
+"cpxs_lref"
+"cpxs_pair_sn"
+"cpxs_refl"
+"cpxs_reqx_conf"
+"cpxs_reqx_conf_dx"
+"cpxs_reqx_conf_sn"
+"cpxs_sort"
+"cpxs_strap1"
+"cpxs_strap2"
+"cpxs_teqx_fpbs"
+"cpxs_teqx_fpbs_trans"
+"cpxs_theta"
+"cpxs_theta_dx"
+"cpxs_theta_rc"
+"cpxs_tneqx_fpbg"
+"cpxs_tneqx_fwd_step_sn"
+"cpxs_trans"
+"cpx_subst"
+"cpxs_zeta"
+"cpxs_zeta_dx"
+"cpx_teqx_conf"
+"cpx_teqx_conf_rex"
+"cpx_theta"
+"cpx_zeta"
+"csx"
+"csx_abbr"
+"csx_abst"
+"csx_appl_beta"
+"csx_appl_beta_aux"
+"csx_appl_simple"
+"csx_appl_simple_teqo"
+"csx_appl_theta"
+"csx_appl_theta_aux"
+"csx_applv_beta"
+"csx_applv_cast"
+"csx_applv_cnx"
+"csx_applv_delta_drops"
+"csx_applv_sort"
+"csx_applv_theta"
+"csx_bind"
+"csx_cast"
+"csx_cpcs_dec"
+"csx_cpxs_trans"
+"csx_cpx_trans"
+"csx_feqx_conf"
+"csx_fpbq_conf"
+"csx_fqu_conf"
+"csx_fqup_conf"
+"csx_fquq_conf"
+"csx_fqus_conf"
+"csx_fsb"
+"csx_fsb_fpbs"
+"csx_fwd_applv"
+"csx_fwd_bind"
+"csx_fwd_bind_dx"
+"csx_fwd_bind_dx_aux"
+"csx_fwd_bind_dx_unit"
+"csx_fwd_bind_dx_unit_aux"
+"csx_fwd_bind_unit"
+"csx_fwd_flat"
+"csx_fwd_flat_dx"
+"csx_fwd_flat_dx_aux"
+"csx_fwd_pair_sn"
+"csx_fwd_pair_sn_aux"
+"csx_gcp"
+"csx_gcr"
+"csx_ind"
+"csx_ind_cpxs"
+"csx_ind_cpxs_teqx"
+"csx_ind_fpb"
+"csx_ind_fpbg"
+"csx_intro"
+"csx_intro_cpxs"
+"csx_inv_lifts"
+"csx_inv_lref_drops"
+"csx_inv_lref_pair_drops"
+"csx_lifts"
+"csx_lpx_conf"
+"csx_lpxs_conf"
+"csx_lref_pair_drops"
+"csx_lsubr_conf"
+"csx_reqx_conf"
+"csx_reqx_trans"
+"csx_rsx"
+"csx_sort"
+"csx_teqx_trans"
+"csxv"
+"csxv_inv_cons"
+"drops_lprs_trans"
+"drops_lpr_trans"
+"drops_lpxs_trans"
+"drops_lpx_trans"
+"feqx_cpxs_trans"
+"feqx_cpx_trans"
+"feqx_fpbg_trans"
+"feqx_fpbs"
+"feqx_fpbs_trans"
+"feqx_fpb_trans"
+"feqx_lpxs_trans"
+"fleq_rpx"
+"fpb"
+"fpb_cpx"
+"fpb_fpbg"
+"fpb_fpbg_trans"
+"fpb_fpbq"
+"fpb_fpbq_fneqx"
+"fpb_fpbs"
+"fpb_fqu"
+"fpbg"
+"fpbg_cpms_trans"
+"fpbg_feqx_trans"
+"fpbg_fpbq_trans"
+"fpbg_fpbs_trans"
+"fpbg_fqu_trans"
+"fpbg_fwd_fpbs"
+"fpbg_teqx_div"
+"fpbg_trans"
+"fpb_inv_feqx"
+"fpb_lpx"
+"fpbq"
+"fpbq_aaa_conf"
+"fpbq_cpx"
+"fpbq_feqx"
+"fpbq_fneqx_inv_fpb"
+"fpbq_fpbg_trans"
+"fpbq_fpbs"
+"fpbq_fquq"
+"fpbq_inv_fpb"
+"fpbq_lpx"
+"fpbq_refl"
+"fpbs"
+"fpbs_aaa_conf"
+"fpbs_cpxs_teqx_fqup_lpx_trans"
+"fpbs_cpxs_trans"
+"fpbs_cpx_tneqx_trans"
+"fpbs_csx_conf"
+"fpbs_feqx_trans"
+"fpbs_fpbg_trans"
+"fpbs_fpb_trans"
+"fpbs_fqup_trans"
+"fpbs_fqus_trans"
+"fpbs_ind"
+"fpbs_ind_dx"
+"fpbs_intro_star"
+"fpbs_inv_fpbg"
+"fpbs_inv_star"
+"fpbs_lpxs_trans"
+"fpbs_lpx_trans"
+"fpbs_refl"
+"fpbs_strap1"
+"fpbs_strap2"
+"fpbs_teqx_trans"
+"fpbs_trans"
+"fqu_cpr_trans_dx"
+"fqu_cpr_trans_sn"
+"fqu_cpxs_trans"
+"fqu_cpxs_trans_tneqx"
+"fqu_cpx_trans"
+"fqu_cpx_trans_tneqx"
+"fqu_lpr_trans"
+"fqu_lpx_trans"
+"fqup_cpms_fwd_fpbg"
+"fqup_cpxs_trans"
+"fqup_cpxs_trans_tneqx"
+"fqup_cpx_trans"
+"fqup_cpx_trans_tneqx"
+"fqup_fpbg"
+"fqup_fpbg_trans"
+"fqup_fpbs"
+"fqup_fpbs_trans"
+"fquq_cpr_trans_dx"
+"fquq_cpr_trans_sn"
+"fquq_cpxs_trans"
+"fquq_cpxs_trans_tneqx"
+"fquq_cpx_trans"
+"fquq_cpx_trans_tneqx"
+"fquq_lpr_trans"
+"fquq_lpx_trans"
+"fqus_cpxs_trans"
+"fqus_cpxs_trans_tneqx"
+"fqus_cpx_trans"
+"fqus_cpx_trans_tneqx"
+"fqus_fpbs"
+"fqus_fpbs_trans"
+"fqus_lpxs_fpbs"
+"fsb"
+"fsb_feqx_trans"
+"fsb_fpbg_refl_false"
+"fsb_fpbs_trans"
+"fsb_ind_alt"
+"fsb_ind_fpbg"
+"fsb_ind_fpbg_fpbs"
+"fsb_intro"
+"fsb_intro_fpbg"
+"fsb_inv_csx"
+"IH_cnv_cpm_conf_lpr"
+"IH_cnv_cpms_conf_lpr"
+"IH_cnv_cpms_strip_lpr"
+"IH_cnv_cpms_trans_lpr"
+"IH_cnv_cpm_teqx_conf_lpr"
+"IH_cnv_cpm_teqx_cpm_trans"
+"IH_cnv_cpm_trans_lpr"
+"IH_cpr_conf_lpr"
+"jsx"
+"jsx_atom"
+"jsx_bind"
+"jsx_csx_conf"
+"jsx_fwd_bind_sn"
+"jsx_fwd_drops_atom_sn"
+"jsx_fwd_drops_pair_sn"
+"jsx_fwd_drops_unit_sn"
+"jsx_fwd_lsubr"
+"jsx_inv_atom_sn"
+"jsx_inv_atom_sn_aux"
+"jsx_inv_bind_sn"
+"jsx_inv_bind_sn_aux"
+"jsx_inv_pair_sn"
+"jsx_inv_void_sn"
+"jsx_pair"
+"jsx_refl"
+"jsx_trans"
+"lfsx_atom"
+"lpr"
+"lpr_aaa_conf"
+"lpr_bind"
+"lpr_bind_refl_dx"
+"lpr_conf"
+"lpr_cpcs_conf"
+"lpr_cpcs_trans"
+"lpr_cpms_trans"
+"lpr_cpm_trans"
+"lpr_cpr_conf"
+"lpr_cpr_conf_dx"
+"lpr_cpr_conf_sn"
+"lpr_cprs_conf"
+"lpr_cprs_trans"
+"lpr_cpr_trans"
+"lpr_drops_conf"
+"lpr_drops_trans"
+"lpr_fpb"
+"lpr_fpbq"
+"lpr_fquq_trans"
+"lpr_fqu_trans"
+"lpr_fwd_length"
+"lpr_fwd_lpx"
+"lpr_inv_atom_dx"
+"lpr_inv_atom_sn"
+"lpr_inv_bind_dx"
+"lpr_inv_bind_sn"
+"lpr_inv_pair"
+"lpr_inv_pair_dx"
+"lpr_inv_pair_sn"
+"lpr_inv_unit_dx"
+"lpr_inv_unit_sn"
+"lpr_lprs"
+"lpr_pair"
+"lpr_refl"
+"lprs"
+"lprs_aaa_conf"
+"lprs_bind_refl_dx"
+"lprs_conf"
+"lprs_cpcs_trans"
+"lprs_cpms_trans"
+"lprs_cpm_trans"
+"lprs_cpr_conf_dx"
+"lprs_cpr_conf_sn"
+"lprs_cprs_conf"
+"lprs_cprs_conf_dx"
+"lprs_cprs_conf_sn"
+"lprs_CTC"
+"lprs_drops_conf"
+"lprs_drops_trans"
+"lprs_fwd_length"
+"lprs_fwd_lpxs"
+"lprs_ind"
+"lprs_ind_dx"
+"lprs_ind_sn"
+"lprs_inv_atom_dx"
+"lprs_inv_atom_sn"
+"lprs_inv_CTC"
+"lprs_inv_pair_dx"
+"lprs_inv_pair_sn"
+"lprs_inv_TC"
+"lprs_pair"
+"lprs_pair_dx"
+"lprs_refl"
+"lprs_step_dx"
+"lprs_step_sn"
+"lprs_strip"
+"lprs_TC"
+"lprs_trans"
+"lpx"
+"lpx_aaa_conf"
+"lpx_bind"
+"lpx_bind_refl_dx"
+"lpx_cpx_conf_fsge"
+"lpx_cpxs_trans"
+"lpx_cpx_trans"
+"lpx_drops_conf"
+"lpx_drops_trans"
+"lpx_fqup_trans"
+"lpx_fquq_trans"
+"lpx_fqus_trans"
+"lpx_fqu_trans"
+"lpx_fsge_comp"
+"lpx_fwd_length"
+"lpx_inv_atom_dx"
+"lpx_inv_atom_sn"
+"lpx_inv_bind_dx"
+"lpx_inv_bind_sn"
+"lpx_inv_pair"
+"lpx_inv_pair_dx"
+"lpx_inv_pair_sn"
+"lpx_inv_unit_dx"
+"lpx_inv_unit_sn"
+"lpx_lpxs"
+"lpx_pair"
+"lpx_refl"
+"lpx_rpx"
+"lpxs"
+"lpxs_aaa_conf"
+"lpxs_bind_refl_dx"
+"lpxs_cpxs_trans"
+"lpxs_cpx_trans"
+"lpxs_drops_conf"
+"lpxs_drops_trans"
+"lpxs_feqx_fpbs"
+"lpxs_fpbs"
+"lpxs_fpbs_trans"
+"lpxs_fwd_length"
+"lpxs_ind"
+"lpxs_ind_dx"
+"lpxs_ind_sn"
+"lpxs_inv_atom_dx"
+"lpxs_inv_atom_sn"
+"lpxs_inv_bind_sn"
+"lpxs_inv_pair_dx"
+"lpxs_inv_pair_sn"
+"lpxs_pair"
+"lpxs_pair_dx"
+"lpxs_refl"
+"lpxs_rneqx_fpbg"
+"lpxs_rneqx_inv_step_sn"
+"lpxs_step_dx"
+"lpxs_step_sn"
+"lpxs_trans"
+"lsubr_cpcs_trans"
+"lsubr_cpg_trans"
+"lsubr_cpms_trans"
+"lsubr_cpm_trans"
+"lsubr_cpxs_trans"
+"lsubr_cpx_trans"
+"lsubsv_fwd_lsuba"
+"lsubv"
+"lsubv_atom"
+"lsubv_beta"
+"lsubv_bind"
+"lsubv_cnv_trans"
+"lsubv_cpcs_trans"
+"lsubv_cpms_trans"
+"lsubv_drops_conf_isuni"
+"lsubv_drops_trans_isuni"
+"lsubv_fwd_lsubr"
+"lsubv_inv_abst_sn"
+"lsubv_inv_atom_dx"
+"lsubv_inv_atom_dx_aux"
+"lsubv_inv_atom_sn"
+"lsubv_inv_atom_sn_aux"
+"lsubv_inv_bind_dx"
+"lsubv_inv_bind_dx_aux"
+"lsubv_inv_bind_sn"
+"lsubv_inv_bind_sn_aux"
+"lsubv_refl"
+"lsubv_trans"
+"nta"
+"nta_abst_predicative"
+"nta_abst_repellent"
+"nta_appl"
+"nta_appl_abst"
+"nta_appl_ntas_pos"
+"nta_appl_ntas_zero"
+"nta_bind_cnv"
+"nta_cast"
+"nta_cast_old"
+"nta_conv"
+"nta_conv_cnv"
+"nta_cpcs_bi"
+"nta_cpcs_conf"
+"nta_cpcs_conf_cnv"
+"nta_cpr_conf"
+"nta_cpr_conf_lpr"
+"nta_cprs_conf"
+"nta_cprs_trans"
+"nta_fwd_aaa"
+"nta_fwd_cnv_dx"
+"nta_fwd_cnv_sn"
+"nta_fwd_correct"
+"nta_fwd_fsb"
+"nta_ind_cnv"
+"nta_ind_ext_cnv"
+"nta_ind_ext_cnv_mixed"
+"nta_ind_rest_cnv"
+"nta_inference_dec"
+"nta_inv_abst_bi_cnv"
+"nta_inv_appl_sn"
+"nta_inv_appl_sn_ntas"
+"nta_inv_bind_sn_cnv"
+"nta_inv_cast_sn"
+"nta_inv_cast_sn_old"
+"nta_inv_gref_sn"
+"nta_inv_ldec_sn_cnv"
+"nta_inv_ldef_sn"
+"nta_inv_lifts_sn"
+"nta_inv_lref_sn"
+"nta_inv_lref_sn_drops_cnv"
+"nta_inv_pure_sn_cnv"
+"nta_inv_sort_sn"
+"nta_ldec_cnv"
+"nta_ldec_drops_cnv"
+"nta_ldef"
+"nta_ldef_drops"
+"nta_lifts_bi"
+"nta_lifts_sn"
+"nta_lpr_conf"
+"nta_lprs_conf"
+"nta_lref"
+"nta_mono"
+"nta_ntas"
+"nta_pure_cnv"
+"ntas"
+"ntas_bind_cnv"
+"ntas_fwd_cnv_dx"
+"ntas_fwd_cnv_sn"
+"ntas_ind_bi_nta"
+"ntas_intro"
+"ntas_inv_appl_sn"
+"ntas_inv_nta"
+"ntas_inv_plus"
+"ntas_inv_zero"
+"nta_sort"
+"ntas_refl"
+"ntas_sort"
+"ntas_step_dx"
+"ntas_step_sn"
+"ntas_trans"
+"ntas_zero"
+"nta_typecheck"
+"nta_typecheck_dec"
+"R_cpmuwe"
+"R_cpmuwe_total_csx"
+"req_cpx_trans"
+"reqx_cpxs_trans"
+"reqx_cpx_trans"
+"reqx_fpb_trans"
+"reqx_lpxs_trans"
+"reqx_lpx_trans"
+"reqx_rpx_trans"
+"rpr_fsge_comp"
+"rpx"
+"rpx_atom"
+"rpx_bind"
+"rpx_bind_dx_split"
+"rpx_bind_dx_split_void"
+"rpx_bind_repl_dx"
+"rpx_bind_void"
+"rpx_cpx_conf"
+"rpx_cpx_conf_fsge"
+"rpx_cpx_conf_fsge_dx"
+"rpx_flat"
+"rpx_flat_dx_split"
+"rpx_fsge_comp"
+"rpx_fwd_bind_dx"
+"rpx_fwd_bind_dx_void"
+"rpx_fwd_flat_dx"
+"rpx_fwd_length"
+"rpx_fwd_pair_sn"
+"rpx_gref"
+"rpx_inv_atom_dx"
+"rpx_inv_atom_sn"
+"rpx_inv_bind"
+"rpx_inv_bind_void"
+"rpx_inv_flat"
+"rpx_inv_gref"
+"rpx_inv_gref_bind_dx"
+"rpx_inv_gref_bind_sn"
+"rpx_inv_lifts_bi"
+"rpx_inv_lifts_dx"
+"rpx_inv_lifts_sn"
+"rpx_inv_lpx_req"
+"rpx_inv_lref"
+"rpx_inv_lref_bind_dx"
+"rpx_inv_lref_bind_sn"
+"rpx_inv_sort"
+"rpx_inv_sort_bind_dx"
+"rpx_inv_sort_bind_sn"
+"rpx_inv_zero_length"
+"rpx_inv_zero_pair_dx"
+"rpx_inv_zero_pair_sn"
+"rpx_lifts_sn"
+"rpx_lref"
+"rpx_pair"
+"rpx_pair_refl"
+"rpx_pair_sn_split"
+"rpx_refl"
+"rpx_reqx_conf"
+"rpx_sort"
+"rpx_teqx_conf"
+"rpx_teqx_div"
+"rsx"
+"rsx_bind"
+"rsx_bind_lpxs_aux"
+"rsx_bind_lpxs_void_aux"
+"rsx_bind_void"
+"rsx_cpxs_trans"
+"rsx_cpx_trans"
+"rsx_cpx_trans_jsx"
+"rsx_flat"
+"rsx_flat_lpxs"
+"rsx_fwd_bind_dx_void"
+"rsx_fwd_flat_dx"
+"rsx_fwd_lref_pair_csx"
+"rsx_fwd_lref_pair_csx_aux"
+"rsx_fwd_lref_pair_csx_drops"
+"rsx_fwd_lref_pair_drops"
+"rsx_fwd_pair"
+"rsx_fwd_pair_aux"
+"rsx_fwd_pair_sn"
+"rsx_gref"
+"rsx_ind"
+"rsx_ind_lpxs"
+"rsx_ind_lpxs_reqx"
+"rsx_intro"
+"rsx_intro_lpxs"
+"rsx_inv_bind_void"
+"rsx_inv_flat"
+"rsx_inv_lifts"
+"rsx_inv_lref_drops"
+"rsx_inv_lref_pair"
+"rsx_inv_lref_pair_drops"
+"rsx_jsx_trans"
+"rsx_lifts"
+"rsx_lpxs_trans"
+"rsx_lpx_trans"
+"rsx_lref_atom_drops"
+"rsx_lref_pair"
+"rsx_lref_pair_drops"
+"rsx_lref_pair_lpxs"
+"rsx_lref_unit_drops"
+"rsx_reqx_trans"
+"rsx_sort"
+"rsx_unit"
+"teqx_cpxs_trans"
+"teqx_cpx_trans"
+"teqx_fpbs_trans"
+"teqx_fpb_trans"
+"teqx_reqx_lpx_fpbs"
index 686676a947ddaf290e17746c6b4693d4d9bff684..e1278eadf7f8724e889238d83a494a038d591a87 100644 (file)
@@ -60,8 +60,7 @@ lemma cpg_inv_lref1_drops: ∀Rt,c,h,G,i,L,T2. ❪G,L❫ ⊢ #i ⬈[Rt,c,h] T2 
     /3 width=1 by or3_intro0, conj/
   ] *
   #cV #L #W #W2 #HKL #HW2 #HWV2 #H destruct
-  lapply (lifts_trans … HWV2 … HVT2 ??) -V2 [3,6: |*: // ] #H
-(* lapply (lifts_uni … H) -H #H *) (**)
+  lapply (lifts_trans … HWV2 … HVT2 (𝐔❨↑↑i❩) ?) -V2 [1,3: // ] #H (**) (* explicit rtmap *)
   /4 width=8 by drops_drop, ex4_4_intro, or3_intro2, or3_intro1/
 ]
 qed-.
index 25e865b6f320ca89ebd457dfbfa6cdae80398d6b..2f23d0fda57d72087ebf2acf24e9a04c5958037d 100644 (file)
-aaa
-aaa_abbr
-aaa_abst
-aaa_appl
-aaa_cast
-aaa_csx
-aaa_da
-aaa_fqu_conf
-aaa_fqup_conf
-aaa_fquq_conf
-aaa_fqus_conf
-aaa_fsb
-aaa_fsba
-aaa_ind_csx
-aaa_ind_csx_alt
-aaa_ind_csx_alt_aux
-aaa_ind_csx_aux
-aaa_ind_fpb
-aaa_ind_fpb_aux
-aaa_ind_fpbg
-aaa_ind_fpbg_aux
-aaa_inv_abbr
-aaa_inv_abbr_aux
-aaa_inv_abst
-aaa_inv_abst_aux
-aaa_inv_appl
-aaa_inv_appl_aux
-aaa_inv_cast
-aaa_inv_cast_aux
-aaa_inv_gref
-aaa_inv_gref_aux
-aaa_inv_lift
-aaa_inv_lref
-aaa_inv_lref_aux
-aaa_inv_sort
-aaa_inv_sort_aux
-aaa_lift
-aaa_lifts
-aaa_lleq_conf
-aaa_lref
-aaa_lstas
-aaa_mono
-aaa_sort
-aarity
-AAtom
-Abbr
-Abst
-acr
-acr_aaa
-acr_aaa_csubc_lifts
-acr_abst
-acr_gcr
-APair
-append
-append_assoc
-append_atom_sn
-append_inj_dx
-append_inj_sn
-append_inv_pair_dx
-append_inv_refl_dx
-append_length
-Appl
-ApplDelta
-ApplDelta_lift
-ApplOmega1
-ApplOmega2
-ApplOmega3
-applv
-applv_simple
-at
-at_ge
-at_inv_cons
-at_inv_cons_aux
-at_inv_cons_ge
-at_inv_cons_lt
-at_inv_nil
-at_inv_nil_aux
-at_lt
-at_mono
-at_nil
-bind2
-Bind2
-candidate
-Cast
-ceq
-cfun
-cir
-cir_appl
-cir_cnr
-cir_gref
-cir_ib2
-cir_inv_appl
-cir_inv_bind
-cir_inv_delta
-cir_inv_flat
-cir_inv_ib2
-cir_inv_lift
-cir_inv_ri2
-cir_lift
-cir_sort
-cix
-cix_appl
-cix_cnx
-cix_gref
-cix_ib2
-cix_inv_appl
-cix_inv_bind
-cix_inv_cir
-cix_inv_delta
-cix_inv_flat
-cix_inv_ib2
-cix_inv_lift
-cix_inv_ri2
-cix_inv_sort
-cix_lift
-cix_lref
-cix_sort
-cnr
-cnr_abst
-cnr_appl_simple
-cnr_dec
-cnr_inv_abbr
-cnr_inv_abst
-cnr_inv_appl
-cnr_inv_cir
-cnr_inv_crr
-cnr_inv_delta
-cnr_inv_eps
-cnr_inv_lift
-cnr_inv_zeta
-cnr_lift
-cnr_lref_abst
-cnr_lref_atom
-cnr_lref_free
-cnr_sort
-cnx
-cnx_abst
-cnx_appl_simple
-cnx_csx
-cnx_dec
-cnx_fwd_cnr
-cnx_inv_abbr
-cnx_inv_abst
-cnx_inv_appl
-cnx_inv_cix
-cnx_inv_crx
-cnx_inv_delta
-cnx_inv_eps
-cnx_inv_lift
-cnx_inv_sort
-cnx_inv_zeta
-cnx_lift
-cnx_lref_atom
-cnx_lref_free
-cnx_sort
-cnx_sort_iter
-CP0
-CP1
-CP2
-CP3
-cpc
-cpc_conf
-cpc_cpcs
-cpc_fwd_cpr
-cpc_refl
-cpcs
-cpcs_aaa_mono
-cpcs_bind1
-cpcs_bind2
-cpcs_bind_dx
-cpcs_bind_sn
-cpcs_canc_dx
-cpcs_canc_sn
-cpcs_cpr_conf
-cpcs_cpr_div
-cpcs_cprs_conf
-cpcs_cprs_div
-cpcs_cprs_dx
-cpcs_cprs_sn
-cpcs_cprs_strap1
-cpcs_cprs_strap2
-cpcs_cpr_strap1
-cpcs_cpr_strap2
-cpcs_flat
-cpcs_flat_dx_cpr_rev
-cpcs_ind
-cpcs_ind_dx
-cpcs_inv_abst1
-cpcs_inv_abst2
-cpcs_inv_abst_dx
-cpcs_inv_abst_sn
-cpcs_inv_cprs
-cpcs_inv_lift
-cpcs_inv_sort
-cpcs_inv_sort_abst
-cpcs_lift
-cpcs_refl
-cpcs_scpes
-cpcs_strap1
-cpcs_strap2
-cpcs_strip
-cpcs_sym
-cpcs_trans
-cpc_sym
-cpr
-cpr_aaa_conf
-cpr_ApplOmega_12
-cpr_ApplOmega_23
-cpr_atom
-cpr_beta
-cpr_bind
-cpr_bind2
-cpr_conf
-cpr_conf_lpr
-cpr_conf_lpr_atom_atom
-cpr_conf_lpr_atom_delta
-cpr_conf_lpr_beta_beta
-cpr_conf_lpr_bind_bind
-cpr_conf_lpr_bind_zeta
-cpr_conf_lpr_delta_delta
-cpr_conf_lpr_eps_eps
-cpr_conf_lpr_flat_beta
-cpr_conf_lpr_flat_eps
-cpr_conf_lpr_flat_flat
-cpr_conf_lpr_flat_theta
-cpr_conf_lpr_theta_theta
-cpr_conf_lpr_zeta_zeta
-cpr_cpcs_dx
-cpr_cpcs_sn
-cpr_cprs
-cpr_cprs_conf_cpcs
-cpr_cprs_div
-cpr_cpx
-cpr_delift
-cpr_delta
-cpr_div
-cpre
-cpre_mono
-cpr_eps
-cpr_flat
-cpr_fpb
-cpr_fpbq
-cpr_fwd_bind1_minus
-cpr_fwd_cir
-cpr_inv_abbr1
-cpr_inv_abst1
-cpr_inv_appl1
-cpr_inv_appl1_simple
-cpr_inv_atom1
-cpr_inv_atom1_aux
-cpr_inv_bind1
-cpr_inv_bind1_aux
-cpr_inv_cast1
-cpr_inv_flat1
-cpr_inv_flat1_aux
-cpr_inv_gref1
-cpr_inv_lift1
-cpr_inv_lref1
-cpr_inv_sort1
-cpr_lift
-cpr_llpx_sn_conf
-cpr_lpr_fpbs
-cpr_lpr_sta_fpbs
-cpr_Omega_12
-cpr_Omega_21
-cpr_pair_sn
-cpr_refl
-cprs
-cprs_aaa_conf
-cprs_beta
-cprs_beta_dx
-cprs_beta_rc
-cprs_bind
-cprs_bind2
-cprs_bind2_dx
-cprs_bind_dx
-cprs_conf
-cprs_conf_cpcs
-cprs_cpr_conf_cpcs
-cprs_cpr_div
-cprs_cpxs
-cprs_delta
-cprs_div
-cprs_eps
-cprs_flat
-cprs_flat_dx
-cprs_flat_sn
-cprs_fpbs
-cprs_ind
-cprs_ind_dx
-cprs_inv_abbr1
-cprs_inv_abst
-cprs_inv_abst1
-cprs_inv_appl1
-cprs_inv_cast1
-cprs_inv_cnr1
-cprs_inv_lift1
-cprs_inv_lref1
-cprs_inv_sort1
-cprs_lift
-cprs_lpr_conf_dx
-cprs_lpr_conf_sn
-cprs_refl
-cprs_scpds_div
-cprs_strap1
-cprs_strap2
-cprs_strip
-cprs_theta
-cprs_theta_dx
-cprs_theta_rc
-cprs_trans
-cprs_zeta
-cpr_theta
-cpr_zeta
-cpx
-cpx_aaa_conf
-cpx_atom
-cpx_beta
-cpx_bind
-cpx_bind2
-cpx_cpxs
-cpx_ct
-cpx_delift
-cpx_delta
-cpxe
-cpx_eps
-cpx_flat
-cpx_frees_trans
-cpx_fwd_bind1_minus
-cpx_fwd_cix
-cpx_inv_abbr1
-cpx_inv_abst1
-cpx_inv_appl1
-cpx_inv_appl1_simple
-cpx_inv_atom1
-cpx_inv_atom1_aux
-cpx_inv_bind1
-cpx_inv_bind1_aux
-cpx_inv_cast1
-cpx_inv_flat1
-cpx_inv_flat1_aux
-cpx_inv_gref1
-cpx_inv_lift1
-cpx_inv_lref1
-cpx_inv_lref1_ge
-cpx_inv_sort1
-cpx_lift
-cpx_lleq_conf
-cpx_lleq_conf_dx
-cpx_lleq_conf_sn
-cpx_llpx_sn_conf
-cpx_lpx_aaa_conf
-cpx_pair_sn
-cpx_refl
-cpxs
-cpxs_aaa_conf
-cpxs_ApplOmega_13
-cpxs_beta
-cpxs_beta_dx
-cpxs_beta_rc
-cpxs_bind
-cpxs_bind2
-cpxs_bind2_dx
-cpxs_bind_dx
-cpxs_ct
-cpxs_delta
-cpxs_eps
-cpxs_flat
-cpxs_flat_dx
-cpxs_flat_sn
-cpxs_fpbg
-cpxs_fpbs
-cpxs_fpbs_trans
-cpxs_fqup_fpbs
-cpxs_fqus_fpbs
-cpxs_fqus_lpxs_fpbs
-cpxs_fwd_beta
-cpxs_fwd_beta_vector
-cpxs_fwd_cast
-cpxs_fwd_cast_vector
-cpxs_fwd_cnx
-cpxs_fwd_cnx_vector
-cpxs_fwd_delta
-cpxs_fwd_delta_vector
-cpxs_fwd_sort
-cpxs_fwd_sort_vector
-cpxs_fwd_theta
-cpxs_fwd_theta_vector
-cpxs_ind
-cpxs_ind_dx
-cpxs_inv_abbr1
-cpxs_inv_abst1
-cpxs_inv_appl1
-cpxs_inv_cast1
-cpxs_inv_cnx1
-cpxs_inv_lift1
-cpxs_inv_lref1
-cpxs_inv_sort1
-cpxs_lift
-cpxs_lleq_conf
-cpxs_lleq_conf_dx
-cpxs_lleq_conf_sn
-cpxs_neq_inv_step_sn
-cpxs_pair_sn
-cpxs_refl
-cpxs_sort
-cpxs_strap1
-cpxs_strap2
-cpx_st
-cpxs_theta
-cpxs_theta_dx
-cpxs_theta_rc
-cpxs_trans
-cpxs_zeta
-cpx_theta
-cpx_zeta
-cpy
-cpy_atom
-cpy_bind
-cpy_conf_eq
-cpy_conf_neq
-cpy_cpys
-cpy_flat
-cpy_full
-cpy_fwd_nlift2_ge
-cpy_fwd_tw
-cpy_fwd_up
-cpy_inv_atom1
-cpy_inv_atom1_aux
-cpy_inv_bind1
-cpy_inv_bind1_aux
-cpy_inv_flat1
-cpy_inv_flat1_aux
-cpy_inv_gref1
-cpy_inv_lift1_be
-cpy_inv_lift1_be_up
-cpy_inv_lift1_eq
-cpy_inv_lift1_ge
-cpy_inv_lift1_ge_up
-cpy_inv_lift1_le
-cpy_inv_lift1_le_up
-cpy_inv_lref1
-cpy_inv_refl_O2
-cpy_inv_refl_O2_aux
-cpy_inv_sort1
-cpy_lift_be
-cpy_lift_ge
-cpy_lift_le
-cpy_refl
-cpys
-cpysa
-cpysa_atom
-cpysa_bind
-cpysa_cpy_trans
-cpysa_flat
-cpysa_inv_cpys
-cpys_antisym_eq
-cpysa_refl
-cpysa_subst
-cpys_bind
-cpys_conf_eq
-cpys_conf_neq
-cpys_cpysa
-cpys_flat
-cpys_fwd_tw
-cpys_fwd_up
-cpys_ind
-cpys_ind_alt
-cpys_ind_dx
-cpys_inv_atom1
-cpys_inv_bind1
-cpys_inv_flat1
-cpys_inv_gref1
-cpys_inv_lift1_be
-cpys_inv_lift1_be_up
-cpys_inv_lift1_eq
-cpys_inv_lift1_ge
-cpys_inv_lift1_ge_up
-cpys_inv_lift1_le
-cpys_inv_lift1_le_up
-cpys_inv_lift1_subst
-cpys_inv_lift1_up
-cpys_inv_lref1
-cpys_inv_lref1_drop
-cpys_inv_lref1_Y2
-cpys_inv_refl_O2
-cpys_inv_SO2
-cpys_inv_sort1
-cpys_lift_be
-cpys_lift_ge
-cpys_lift_le
-cpy_split_down
-cpy_split_up
-cpys_refl
-cpys_split_up
-cpys_strap1
-cpys_strap1_down
-cpys_strap2
-cpys_strap2_down
-cpys_strip_eq
-cpys_strip_neq
-cpys_subst
-cpys_subst_Y2
-cpys_trans_down
-cpys_trans_eq
-cpy_subst
-cpys_weak
-cpys_weak_full
-cpys_weak_top
-cpy_trans_down
-cpy_trans_ge
-cpy_weak
-cpy_weak_full
-cpy_weak_top
-crr
-crr_appl_dx
-crr_appl_sn
-crr_beta
-crr_crx
-crr_delta
-crr_ib2_dx
-crr_ib2_sn
-crr_inv_appl
-crr_inv_appl_aux
-crr_inv_gref
-crr_inv_gref_aux
-crr_inv_ib2
-crr_inv_ib2_aux
-crr_inv_lift
-crr_inv_lref
-crr_inv_lref_aux
-crr_inv_sort
-crr_inv_sort_aux
-crr_lift
-crr_ri2
-crr_theta
-crx
-crx_appl_dx
-crx_appl_sn
-crx_beta
-crx_delta
-crx_ib2_dx
-crx_ib2_sn
-crx_inv_appl
-crx_inv_appl_aux
-crx_inv_gref
-crx_inv_gref_aux
-crx_inv_ib2
-crx_inv_ib2_aux
-crx_inv_lift
-crx_inv_lref
-crx_inv_lref_aux
-crx_inv_sort
-crx_inv_sort_aux
-crx_lift
-crx_ri2
-crx_sort
-crx_theta
-csx
-csxa
-csx_abbr
-csx_abst
-csxa_cpxs_trans
-csxa_csx
-csxa_ind
-csxa_intro
-csxa_intro_aux
-csxa_intro_cpx
-csx_appl_beta
-csx_appl_beta_aux
-csx_appl_simple
-csx_appl_simple_tsts
-csx_appl_theta
-csx_appl_theta_aux
-csx_applv_beta
-csx_applv_cast
-csx_applv_cnx
-csx_applv_delta
-csx_applv_sort
-csx_applv_theta
-csx_cast
-csx_cpre
-csx_cpxe
-csx_cpxs_trans
-csx_cpx_trans
-csx_csxa
-csx_fpb_conf
-csx_fpbs_conf
-csx_fqu_conf
-csx_fqup_conf
-csx_fquq_conf
-csx_fqus_conf
-csx_fsb
-csx_fsb_fpbs
-csx_fwd_applv
-csx_fwd_bind
-csx_fwd_bind_dx
-csx_fwd_bind_dx_aux
-csx_fwd_flat
-csx_fwd_flat_dx
-csx_fwd_flat_dx_aux
-csx_fwd_pair_sn
-csx_fwd_pair_sn_aux
-csx_gcp
-csx_gcr
-csx_ind
-csx_ind_alt
-csx_ind_fpb
-csx_ind_fpbg
-csx_intro
-csx_intro_cpxs
-csx_inv_lift
-csx_inv_lref_bind
-csx_lift
-csx_lleq_conf
-csx_lleq_trans
-csx_lpx_conf
-csx_lpxs_conf
-csx_lref_bind
-csx_lsx
-csx_sort
-csxv
-csxv_inv_cons
-d1_liftable_liftables
-d1_liftables_liftables_all
-da
-da_bind
-da_cpr_lpr
-da_cpr_lpr_aux
-da_cprs_lpr
-da_cprs_lpr_aux
-da_flat
-da_inv_bind
-da_inv_bind_aux
-da_inv_flat
-da_inv_flat_aux
-da_inv_gref
-da_inv_gref_aux
-da_inv_lift
-da_inv_lref
-da_inv_lref_aux
-da_inv_sort
-da_inv_sort_aux
-da_ldec
-da_ldef
-da_lift
-da_lstas
-da_mono
-d_appendable_sn
-da_scpds_lpr_aux
-da_scpes_aux
-da_sort
-d_deliftable_sn
-d_deliftable_sn_llstar
-d_deliftable_sn_LTC
-dedropable_sn
-dedropable_sn_TC
-deg_inv_prec
-deg_inv_pred
-deg_iter
-deg_next_SO
-deg_O
-deg_SO
-deg_SO_gt
-deg_SO_inv_pos
-deg_SO_inv_pos_aux
-deg_SO_pos
-deg_SO_refl
-deg_SO_zero
-Delta
-Delta_lift
-destruct_apair_apair_aux
-destruct_lpair_lpair_aux
-destruct_sort_sort_aux
-destruct_tatom_tatom_aux
-destruct_tpair_tpair_aux
-discr_apair_xy_x
-discr_apair_xy_y
-discr_lpair_x_xy
-discr_tpair_xy_x
-discr_tpair_xy_y
-d_liftable
-d_liftable1
-d_liftable_llstar
-d_liftable_LTC
-d_liftables1
-d_liftables1_all
-drop
-dropable_dx
-dropable_dx_TC
-dropable_sn
-dropable_sn_TC
-drop_atom
-drop_conf_be
-drop_conf_div
-drop_conf_ge
-drop_conf_le
-drop_conf_lt
-drop_drop
-drop_drop_lt
-drop_FT
-drop_fwd_be
-drop_fwd_drop2
-drop_fwd_length
-drop_fwd_length_eq1
-drop_fwd_length_eq2
-drop_fwd_length_ge
-drop_fwd_length_le2
-drop_fwd_length_le4
-drop_fwd_length_le_ge
-drop_fwd_length_le_le
-drop_fwd_length_lt2
-drop_fwd_length_lt4
-drop_fwd_length_minus2
-drop_fwd_length_minus4
-drop_fwd_lw
-drop_fwd_lw_lt
-drop_fwd_rfw
-drop_gen
-drop_inv_atom1
-drop_inv_atom1_aux
-drop_inv_drop1
-drop_inv_drop1_lt
-drop_inv_FT
-drop_inv_FT_aux
-drop_inv_gen
-drop_inv_length_eq
-drop_inv_O1_gt
-drop_inv_O1_pair1
-drop_inv_O1_pair1_aux
-drop_inv_O1_pair2
-drop_inv_O2
-drop_inv_O2_aux
-drop_inv_pair1
-drop_inv_refl
-drop_inv_skip1
-drop_inv_skip1_aux
-drop_inv_skip2
-drop_inv_skip2_aux
-drop_inv_T
-drop_lprs_trans
-drop_lpr_trans
-drop_lpxs_trans
-drop_lpx_trans
-drop_lsubc_trans
-drop_mono
-drop_O1_append_sn_le
-drop_O1_append_sn_le_aux
-drop_O1_eq
-drop_O1_ex
-drop_O1_ge
-drop_O1_inj
-drop_O1_inv_append1_ge
-drop_O1_inv_append1_le
-drop_O1_le
-drop_O1_lt
-drop_O1_pair
-drop_pair
-drop_refl
-drop_refl_atom_O2
-drops
-drops_cons
-drops_drop_trans
-drops_inv_cons
-drops_inv_cons_aux
-drops_inv_nil
-drops_inv_nil_aux
-drops_inv_skip2
-drop_skip
-drop_skip_lt
-drops_lsubc_trans
-drops_nil
-drop_split
-drops_skip
-drops_trans
-drop_T
-drop_trans_ge
-drop_trans_ge_comm
-drop_trans_le
-drop_trans_lt
-eq_aarity_dec
-eq_bind2_dec
-eq_false_inv_tpair_dx
-eq_false_inv_tpair_sn
-eq_flat2_dec
-eq_genv_dec
-eq_item0_dec
-eq_item2_dec
-eq_lenv_dec
-eq_term_dec
-flat2
-Flat2
-fleq
-fleq_canc_dx
-fleq_canc_sn
-fleq_fpbg_trans
-fleq_fpbq
-fleq_fpbs
-fleq_fpb_trans
-fleq_intro
-fleq_inv_gen
-fleq_refl
-fleq_sym
-fleq_trans
-fpb
-fpb_cpx
-fpb_fpbg
-fpb_fpbg_trans
-fpb_fpbq
-fpb_fpbq_alt
-fpb_fpbs
-fpb_fpbsa_trans
-fpb_fqu
-fpbg
-fpbg_fleq_trans
-fpbg_fpbq_trans
-fpbg_fpbs_trans
-fpbg_fwd_fpbs
-fpbg_refl
-fpbg_trans
-fpb_inv_fleq
-fpb_lpx
-fpbq
-fpbqa
-fpbq_aaa_conf
-fpbqa_inv_fpbq
-fpbq_cpx
-fpbq_fpbg_trans
-fpbq_fpbqa
-fpbq_fpbs
-fpbq_fquq
-fpbq_ind_alt
-fpbq_inv_fpb_alt
-fpbq_lleq
-fpbq_lpx
-fpbq_refl
-fpbs
-fpbsa
-fpbs_aaa_conf
-fpbsa_inv_fpbs
-fpbs_cpxs_trans
-fpbs_cpx_trans_neq
-fpbs_fpbg
-fpbs_fpbg_trans
-fpbs_fpbsa
-fpbs_fpb_trans
-fpbs_fqup_trans
-fpbs_fqus_trans
-fpbs_ind
-fpbs_ind_dx
-fpbs_intro_alt
-fpbs_inv_alt
-fpbs_lleq_trans
-fpbs_lpxs_trans
-fpbs_refl
-fpbs_strap1
-fpbs_strap2
-fpbs_trans
-fqu
-fqu_bind_dx
-fqu_cpr_trans_dx
-fqu_cpr_trans_sn
-fqu_cpxs_trans
-fqu_cpxs_trans_neq
-fqu_cpx_trans
-fqu_cpx_trans_neq
-fqu_drop
-fqu_drop_lt
-fqu_flat_dx
-fqu_fqup
-fqu_fquq
-fqu_fwd_fw
-fqu_fwd_length_lref1
-fqu_fwd_length_lref1_aux
-fqu_inv_eq
-fqu_inv_eq_aux
-fqu_lpr_trans
-fqu_lpx_trans
-fqu_lref_O
-fqu_lref_S_lt
-fqup
-fqu_pair_sn
-fqup_ApplOmega_13
-fqup_bind_dx
-fqup_bind_dx_flat_dx
-fqup_cpxs_trans
-fqup_cpxs_trans_neq
-fqup_cpx_trans
-fqup_cpx_trans_neq
-fqup_drop
-fqup_flat_dx
-fqup_flat_dx_bind_dx
-fqup_flat_dx_pair_sn
-fqup_fpbg
-fqup_fpbs
-fqup_fqus
-fqup_fqus_trans
-fqup_fwd_fw
-fqup_ind
-fqup_ind_dx
-fqup_inv_step_sn
-fqup_lref
-fqup_pair_sn
-fqup_strap1
-fqup_strap2
-fqup_trans
-fqup_wf_ind
-fqup_wf_ind_eq
-fquq
-fquqa
-fquqa_drop
-fquqa_inv_fquq
-fquqa_refl
-fquq_bind_dx
-fquq_cpr_trans_dx
-fquq_cpr_trans_sn
-fquq_cpxs_trans
-fquq_cpxs_trans_neq
-fquq_cpx_trans
-fquq_cpx_trans_neq
-fquq_drop
-fquq_flat_dx
-fquq_fquqa
-fquq_fqus
-fquq_fwd_fw
-fquq_fwd_length_lref1
-fquq_fwd_length_lref1_aux
-fquq_inv_gen
-fquq_lpr_trans
-fquq_lpx_trans
-fquq_lref_O
-fquq_lstas_trans
-fquq_pair_sn
-fquq_refl
-fquq_sta_trans
-fqus
-fqus_cpxs_trans
-fqus_cpxs_trans_neq
-fqus_cpx_trans
-fqus_cpx_trans_neq
-fqus_drop
-fqus_fpbs
-fqus_fpbs_trans
-fqus_fqup_trans
-fqus_fwd_fw
-fqus_ind
-fqus_ind_dx
-fqus_inv_gen
-fqus_lpxs_fpbs
-fqus_lstas_trans
-fqus_refl
-fqus_strap1
-fqus_strap1_fqu
-fqus_strap2
-fqus_strap2_fqu
-fqu_sta_trans
-fqus_trans
-fqu_wf_ind
-frees
-frees_append
-frees_be
-frees_bind_dx
-frees_bind_dx_O
-frees_bind_sn
-frees_dec
-frees_eq
-frees_flat_dx
-frees_flat_sn
-frees_inv
-frees_inv_append
-frees_inv_append_aux
-frees_inv_bind
-frees_inv_bind_O
-frees_inv_flat
-frees_inv_gref
-frees_inv_lift_be
-frees_inv_lift_ge
-frees_inv_lref
-frees_inv_lref_free
-frees_inv_lref_ge
-frees_inv_lref_lt
-frees_inv_lref_skip
-frees_inv_sort
-frees_lift_ge
-frees_lref_be
-frees_lref_eq
-frees_lreq_conf
-frees_S
-frees_trans
-frees_weak
-fsb
-fsba
-fsba_fpbs_trans
-fsba_ind_alt
-fsba_intro
-fsba_inv_fsb
-fsb_fpbs_trans
-fsb_fsba
-fsb_ind_alt
-fsb_ind_fpbg
-fsb_intro
-fsb_inv_csx
-fw
-fw_lpair_sn
-fw_shift
-fw_tpair_dx
-fw_tpair_sn
-gcp
-gcp0_lifts
-gcp2_lifts
-gcp2_lifts_all
-gcr
-gcr_aaa
-gcr_lift
-gcr_lifts
-genv
-gget
-gget_dec
-gget_eq
-gget_gt
-gget_inv_eq
-gget_inv_gt
-gget_inv_lt
-gget_inv_lt_aux
-gget_lt
-gget_mono
-gget_total
-GRef
-ib2
-IH_da_cpr_lpr
-IH_lstas_cpr_lpr
-IH_snv_cpr_lpr
-IH_snv_lstas
-is_lift_dec
-item0
-item2
-LAtom
-lcosx
-lcosx_drop_trans_lt
-lcosx_inv_pair
-lcosx_inv_succ
-lcosx_inv_succ_aux
-lcosx_O
-lcosx_pair
-lcosx_skip
-lcosx_sort
-length
-length_inv_pos_dx
-length_inv_pos_dx_ltail
-length_inv_pos_sn
-length_inv_pos_sn_ltail
-length_inv_zero_dx
-length_inv_zero_sn
-lenv
-lenv_ind_alt
-lift
-lift_bind
-lift_conf_be
-lift_conf_O1
-lift_div_be
-lift_div_le
-lift_flat
-lift_fwd_pair1
-lift_fwd_pair2
-lift_fwd_tw
-lift_gref
-lift_inj
-lift_inv_bind1
-lift_inv_bind1_aux
-lift_inv_bind2
-lift_inv_bind2_aux
-lift_inv_flat1
-lift_inv_flat1_aux
-lift_inv_flat2
-lift_inv_flat2_aux
-lift_inv_gref1
-lift_inv_gref1_aux
-lift_inv_gref2
-lift_inv_gref2_aux
-lift_inv_lref1
-lift_inv_lref1_aux
-lift_inv_lref1_ge
-lift_inv_lref1_lt
-lift_inv_lref2
-lift_inv_lref2_aux
-lift_inv_lref2_be
-lift_inv_lref2_ge
-lift_inv_lref2_lt
-lift_inv_O2
-lift_inv_O2_aux
-lift_inv_pair_xy_x
-lift_inv_pair_xy_y
-lift_inv_sort1
-lift_inv_sort1_aux
-lift_inv_sort2
-lift_inv_sort2_aux
-lift_lref_ge
-lift_lref_ge_minus
-lift_lref_ge_minus_eq
-lift_lref_lt
-lift_mono
-lift_refl
-lifts
-lifts_applv
-lifts_bind
-lifts_cons
-lifts_flat
-lift_simple_dx
-lift_simple_sn
-lifts_inv_applv1
-lifts_inv_bind1
-lifts_inv_cons
-lifts_inv_cons_aux
-lifts_inv_flat1
-lifts_inv_gref1
-lifts_inv_lref1
-lifts_inv_nil
-lifts_inv_nil_aux
-lifts_inv_sort1
-lifts_lift_trans
-lifts_lift_trans_le
-lifts_nil
-lift_sort
-lift_split
-lifts_simple_dx
-lifts_simple_sn
-lifts_total
-lifts_trans
-liftsv
-liftsv_cons
-liftsv_liftv_trans_le
-liftsv_nil
-lift_total
-lift_trans_be
-lift_trans_ge
-lift_trans_le
-liftv
-liftv_cons
-liftv_inv_cons1
-liftv_inv_cons1_aux
-liftv_inv_nil1
-liftv_inv_nil1_aux
-liftv_mono
-liftv_nil
-liftv_total
-lleq
-lleq_aaa_trans
-lleq_bind
-lleq_bind_O
-lleq_bind_repl_O
-lleq_bind_repl_SO
-lleq_canc_dx
-lleq_canc_sn
-lleq_cpxs_trans
-lleq_cpx_trans
-lleq_dec
-lleq_flat
-lleq_fpbs
-lleq_fpbs_trans
-lleq_fpb_trans
-lleq_fqup_trans
-lleq_fquq_trans
-lleq_fqus_trans
-lleq_fqu_trans
-lleq_free
-lleq_fwd_bind_dx
-lleq_fwd_bind_O_dx
-lleq_fwd_bind_sn
-lleq_fwd_drop_dx
-lleq_fwd_drop_sn
-lleq_fwd_flat_dx
-lleq_fwd_flat_sn
-lleq_fwd_length
-lleq_fwd_lref
-lleq_fwd_lref_dx
-lleq_fwd_lref_sn
-lleq_ge
-lleq_ge_up
-lleq_gref
-lleq_ind
-lleq_ind_alt_r
-lleq_intro_alt
-lleq_intro_alt_r
-lleq_inv_alt
-lleq_inv_alt_r
-lleq_inv_bind
-lleq_inv_bind_O
-lleq_inv_flat
-lleq_inv_lift_be
-lleq_inv_lift_ge
-lleq_inv_lift_le
-lleq_inv_lref_ge
-lleq_inv_lref_ge_bi
-lleq_inv_lref_ge_dx
-lleq_inv_lref_ge_sn
-lleq_inv_S
-lleq_lift_ge
-lleq_lift_le
-lleq_llpx_sn_conf
-lleq_llpx_sn_trans
-lleq_lpxs_trans
-lleq_lpx_trans
-lleq_lref
-lleq_lreq_repl
-lleq_lreq_trans
-lleq_nlleq_trans
-lleq_refl
-lleq_skip
-lleq_sort
-lleq_sym
-lleq_trans
-lleq_transitive
-lleq_Y
-llor
-llor_atom
-llor_skip
-llor_tail_cofrees
-llor_tail_frees
-llor_total
-llpx_sn
-llpx_sn_alt
-llpx_sn_alt_inv_llpx_sn
-llpx_sn_alt_r
-llpx_sn_alt_r_bind
-llpx_sn_alt_r_flat
-llpx_sn_alt_r_free
-llpx_sn_alt_r_fwd_length
-llpx_sn_alt_r_fwd_lref
-llpx_sn_alt_r_gref
-llpx_sn_alt_r_ind_alt
-llpx_sn_alt_r_intro
-llpx_sn_alt_r_intro_alt
-llpx_sn_alt_r_inv_alt
-llpx_sn_alt_r_inv_bind
-llpx_sn_alt_r_inv_flat
-llpx_sn_alt_r_inv_lpx_sn
-llpx_sn_alt_r_lref
-llpx_sn_alt_r_skip
-llpx_sn_alt_r_sort
-llpx_sn_bind
-llpx_sn_bind_O
-llpx_sn_bind_repl_O
-llpx_sn_bind_repl_SO
-llpx_sn_co
-llpx_sn_dec
-llpx_sn_drop_conf_O
-llpx_sn_drop_trans_O
-llpx_sn_flat
-llpx_sn_free
-llpx_sn_frees_trans
-llpx_sn_frees_trans_aux
-llpx_sn_fwd_bind_dx
-llpx_sn_fwd_bind_O_dx
-llpx_sn_fwd_bind_sn
-llpx_sn_fwd_drop_dx
-llpx_sn_fwd_drop_sn
-llpx_sn_fwd_flat_dx
-llpx_sn_fwd_flat_sn
-llpx_sn_fwd_length
-llpx_sn_fwd_lref
-llpx_sn_fwd_lref_aux
-llpx_sn_fwd_lref_dx
-llpx_sn_fwd_lref_sn
-llpx_sn_fwd_pair_sn
-llpx_sn_ge
-llpx_sn_ge_up
-llpx_sn_gref
-llpx_sn_ind_alt_r
-llpx_sn_intro_alt_r
-llpx_sn_inv_alt_r
-llpx_sn_inv_bind
-llpx_sn_inv_bind_aux
-llpx_sn_inv_bind_O
-llpx_sn_inv_flat
-llpx_sn_inv_flat_aux
-llpx_sn_inv_lift_be
-llpx_sn_inv_lift_ge
-llpx_sn_inv_lift_le
-llpx_sn_inv_lift_O
-llpx_sn_inv_lref_ge_bi
-llpx_sn_inv_lref_ge_dx
-llpx_sn_inv_lref_ge_sn
-llpx_sn_inv_S
-llpx_sn_inv_S_aux
-llpx_sn_lift_ge
-llpx_sn_lift_le
-llpx_sn_llor_dx
-llpx_sn_llor_dx_sym
-llpx_sn_llor_fwd_sn
-llpx_sn_llpx_sn_alt
-llpx_sn_lpx_sn_alt_r
-llpx_sn_lref
-llpx_sn_lrefl
-llpx_sn_lreq_repl
-llpx_sn_lreq_trans
-llpx_sn_refl
-llpx_sn_skip
-llpx_sn_sort
-llpx_sn_TC_pair_dx
-llpx_sn_Y
-LPair
-lpair_ltail
-lpr
-lpr_aaa_conf
-lpr_conf
-lpr_cpcs_conf
-lpr_cpcs_trans
-lpr_cpr_conf
-lpr_cpr_conf_dx
-lpr_cpr_conf_sn
-lpr_cprs_conf
-lpr_cprs_trans
-lpr_cpr_trans
-lpr_drop_conf
-lpr_drop_trans_O1
-lpr_fpb
-lpr_fpbq
-lpr_fwd_length
-lpr_inv_atom1
-lpr_inv_atom2
-lpr_inv_pair1
-lpr_inv_pair2
-lpr_lprs
-lpr_lpx
-lpr_pair
-lpr_refl
-lprs
-lprs_aaa_conf
-lprs_conf
-lprs_cpcs_trans
-lprs_cpr_conf_dx
-lprs_cpr_conf_sn
-lprs_cprs_conf
-lprs_cprs_conf_dx
-lprs_cprs_conf_sn
-lprs_cprs_trans
-lprs_cpr_trans
-lprs_drop_conf
-lprs_drop_trans_O1
-lprs_fpbs
-lprs_fwd_length
-lprs_ind
-lprs_ind_alt
-lprs_ind_dx
-lprs_inv_atom1
-lprs_inv_atom2
-lprs_inv_pair1
-lprs_inv_pair2
-lprs_lpxs
-lprs_pair
-lprs_pair2
-lprs_pair_refl
-lprs_refl
-lprs_strap1
-lprs_strap2
-lprs_strip
-lprs_trans
-lpx
-lpx_aaa_conf
-lpx_cpx_frees_trans
-lpx_cpxs_trans
-lpx_cpx_trans
-lpx_drop_conf
-lpx_drop_trans_O1
-lpx_fqup_trans
-lpx_fquq_trans
-lpx_fqus_trans
-lpx_fqu_trans
-lpx_frees_trans
-lpx_fwd_length
-lpx_inv_atom1
-lpx_inv_atom2
-lpx_inv_pair
-lpx_inv_pair1
-lpx_inv_pair2
-lpx_lleq_fqup_trans
-lpx_lleq_fquq_trans
-lpx_lleq_fqus_trans
-lpx_lleq_fqu_trans
-lpx_lpxs
-lpx_pair
-lpx_refl
-lpxs
-lpxs_aaa_conf
-lpxs_cpxs_trans
-lpxs_cpx_trans
-lpxs_drop_conf
-lpxs_drop_trans_O1
-lpxs_fpbg
-lpxs_fpbs
-lpxs_fpbs_trans
-lpxs_fqup_trans
-lpxs_fquq_trans
-lpxs_fqus_trans
-lpxs_fwd_length
-lpxs_ind
-lpxs_ind_alt
-lpxs_ind_dx
-lpxs_inv_atom1
-lpxs_inv_atom2
-lpxs_inv_pair1
-lpxs_inv_pair2
-lpxs_lleq_fpbs
-lpxs_lleq_fqup_trans
-lpxs_lleq_fquq_trans
-lpxs_lleq_fqus_trans
-lpxs_lleq_fqu_trans
-lpx_sn
-lpx_sn_alt
-lpx_sn_alt_atom
-lpx_sn_alt_fwd_length
-lpx_sn_alt_inv_atom1
-lpx_sn_alt_inv_atom2
-lpx_sn_alt_inv_lpx_sn
-lpx_sn_alt_inv_pair1
-lpx_sn_alt_inv_pair2
-lpx_sn_alt_pair
-lpx_sn_atom
-lpx_sn_conf
-lpx_sn_confluent
-lpx_sn_deliftable_dropable
-lpx_sn_dropable
-lpx_sn_dropable_aux
-lpx_sn_drop_conf
-lpx_sn_drop_trans
-lpx_sn_fwd_length
-lpx_sn_intro_alt
-lpx_sn_inv_alt
-lpx_sn_inv_atom1
-lpx_sn_inv_atom1_aux
-lpx_sn_inv_atom2
-lpx_sn_inv_atom2_aux
-lpx_sn_inv_pair
-lpx_sn_inv_pair1
-lpx_sn_inv_pair1_aux
-lpx_sn_inv_pair2
-lpx_sn_inv_pair2_aux
-lpx_sn_liftable_dedropable
-lpxs_nlleq_inv_step_sn
-lpx_sn_llpx_sn
-lpx_sn_lpx_sn_alt
-lpx_sn_LTC_TC_lpx_sn
-lpx_sn_pair
-lpx_sn_refl
-lpx_sn_trans
-lpx_sn_transitive
-lpxs_pair
-lpxs_pair2
-lpxs_pair_refl
-lpxs_refl
-lpxs_strap1
-lpxs_strap2
-lpxs_trans
-LRef
-lreq
-lreq_atom
-lreq_canc_dx
-lreq_canc_sn
-lreq_cpxs_trans
-lreq_cpx_trans
-lreq_drop_conf_be
-lreq_drop_trans_be
-lreq_frees_trans
-lreq_fwd_length
-lreq_inv_atom1
-lreq_inv_atom1_aux
-lreq_inv_atom2
-lreq_inv_O_Y
-lreq_inv_O_Y_aux
-lreq_inv_pair
-lreq_inv_pair1
-lreq_inv_pair1_aux
-lreq_inv_pair2
-lreq_inv_succ
-lreq_inv_succ1
-lreq_inv_succ1_aux
-lreq_inv_succ2
-lreq_inv_zero1
-lreq_inv_zero1_aux
-lreq_inv_zero2
-lreq_join
-lreq_lleq_trans
-lreq_llpx_sn_trans
-lreq_lpxs_trans_lleq
-lreq_lpxs_trans_lleq_aux
-lreq_lpx_trans_lleq
-lreq_lpx_trans_lleq_aux
-lreq_O2
-lreq_pair
-lreq_pair_lt
-lreq_pair_O_Y
-lreq_refl
-lreq_succ
-lreq_succ_lt
-lreq_sym
-lreq_trans
-lreq_zero
-lstas
-lstas_aaa_conf
-lstas_appl
-lstas_bind
-lstas_cast
-lstas_conf
-lstas_conf_le
-lstas_correct
-lstas_cpcs_lpr
-lstas_cpr
-lstas_cpr_aux
-lstas_cpr_lpr
-lstas_cpr_lpr_aux
-lstas_cprs_lpr
-lstas_cprs_lpr_aux
-lstas_cpxs
-lstas_da_conf
-lstas_fpbg
-lstas_fpbs
-lstas_inv_appl1
-lstas_inv_appl1_aux
-lstas_inv_bind1
-lstas_inv_bind1_aux
-lstas_inv_cast1
-lstas_inv_cast1_aux
-lstas_inv_da
-lstas_inv_da_ge
-lstas_inv_gref1
-lstas_inv_gref1_aux
-lstas_inv_lift1
-lstas_inv_lref1
-lstas_inv_lref1_aux
-lstas_inv_lref1_O
-lstas_inv_lref1_S
-lstas_inv_refl_pos
-lstas_inv_sort1
-lstas_inv_sort1_aux
-lstas_ldef
-lstas_lift
-lstas_llpx_sn_conf
-lstas_lstas
-lstas_mono
-lstas_scpds
-lstas_scpds_aux
-lstas_scpds_trans
-lstas_scpes_trans
-lstas_sort
-lstas_split
-lstas_split_aux
-lstas_succ
-lstas_trans
-lstas_zero
-lsuba
-lsuba_aaa_conf
-lsuba_aaa_trans
-lsuba_atom
-lsuba_beta
-lsuba_drop_O1_conf
-lsuba_drop_O1_trans
-lsuba_fwd_lsubr
-lsuba_inv_atom1
-lsuba_inv_atom1_aux
-lsuba_inv_atom2
-lsuba_inv_atom2_aux
-lsuba_inv_pair1
-lsuba_inv_pair1_aux
-lsuba_inv_pair2
-lsuba_inv_pair2_aux
-lsuba_lsubc
-lsuba_pair
-lsuba_refl
-lsuba_trans
-lsubc
-lsubc_atom
-lsubc_beta
-lsubc_drop_O1_trans
-lsubc_fwd_lsubr
-lsubc_inv_atom1
-lsubc_inv_atom1_aux
-lsubc_inv_atom2
-lsubc_inv_atom2_aux
-lsubc_inv_pair1
-lsubc_inv_pair1_aux
-lsubc_inv_pair2
-lsubc_inv_pair2_aux
-lsubc_pair
-lsubc_refl
-lsubd
-lsubd_atom
-lsubd_beta
-lsubd_da_conf
-lsubd_da_trans
-lsubd_drop_O1_conf
-lsubd_drop_O1_trans
-lsubd_fwd_lsubr
-lsubd_inv_atom1
-lsubd_inv_atom1_aux
-lsubd_inv_atom2
-lsubd_inv_atom2_aux
-lsubd_inv_pair1
-lsubd_inv_pair1_aux
-lsubd_inv_pair2
-lsubd_inv_pair2_aux
-lsubd_pair
-lsubd_refl
-lsubd_trans
-lsubr
-lsubr_atom
-lsubr_beta
-lsubr_cpcs_trans
-lsubr_cprs_trans
-lsubr_cpr_trans
-lsubr_cpxs_trans
-lsubr_cpx_trans
-lsubr_fwd_drop2_abbr
-lsubr_fwd_drop2_pair
-lsubr_fwd_length
-lsubr_inv_abbr2
-lsubr_inv_abbr2_aux
-lsubr_inv_abst1
-lsubr_inv_abst1_aux
-lsubr_inv_atom1
-lsubr_inv_atom1_aux
-lsubr_inv_pair1
-lsubr_inv_pair1_aux
-lsubr_pair
-lsubr_refl
-lsubr_trans
-lsubsv
-lsubsv_atom
-lsubsv_beta
-lsubsv_cpcs_trans
-lsubsv_cprs_trans
-lsubsv_drop_O1_conf
-lsubsv_drop_O1_trans
-lsubsv_fwd_lsuba
-lsubsv_fwd_lsubd
-lsubsv_fwd_lsubr
-lsubsv_inv_atom1
-lsubsv_inv_atom1_aux
-lsubsv_inv_atom2
-lsubsv_inv_atom2_aux
-lsubsv_inv_pair1
-lsubsv_inv_pair1_aux
-lsubsv_inv_pair2
-lsubsv_inv_pair2_aux
-lsubsv_lstas_trans
-lsubsv_pair
-lsubsv_refl
-lsubsv_scpds_trans
-lsubsv_snv_trans
-lsubsv_sta_trans
-lsuby
-lsuby_atom
-lsuby_cpysa_trans
-lsuby_cpys_trans
-lsuby_cpy_trans
-lsuby_drop_trans_be
-lsuby_fwd_length
-lsuby_inv_atom1
-lsuby_inv_atom1_aux
-lsuby_inv_pair1
-lsuby_inv_pair1_aux
-lsuby_inv_pair2
-lsuby_inv_pair2_aux
-lsuby_inv_succ1
-lsuby_inv_succ1_aux
-lsuby_inv_succ2
-lsuby_inv_succ2_aux
-lsuby_inv_zero1
-lsuby_inv_zero1_aux
-lsuby_inv_zero2
-lsuby_inv_zero2_aux
-lsuby_O2
-lsuby_pair
-lsuby_pair_lt
-lsuby_pair_O_Y
-lsuby_refl
-lsuby_succ
-lsuby_succ_lt
-lsuby_sym
-lsuby_trans
-lsuby_zero
-lsx
-lsxa
-lsxa_ind
-lsxa_intro
-lsxa_intro_aux
-lsxa_intro_lpx
-lsxa_inv_lsx
-lsxa_lleq_trans
-lsxa_lpxs_trans
-lsx_atom
-lsx_bind
-lsx_bind_lpxs_aux
-lsx_cpx_trans_lcosx
-lsx_cpx_trans_O
-lsx_flat
-lsx_flat_lpxs
-lsx_fwd_bind_dx
-lsx_fwd_bind_sn
-lsx_fwd_flat_dx
-lsx_fwd_flat_sn
-lsx_fwd_lref_be
-lsx_fwd_pair_sn
-lsx_ge
-lsx_ge_up
-lsx_gref
-lsx_ind
-lsx_ind_alt
-lsx_intro
-lsx_intro_alt
-lsx_inv_bind
-lsx_inv_flat
-lsx_inv_lift_be
-lsx_inv_lift_ge
-lsx_inv_lift_le
-lsx_lift_ge
-lsx_lift_le
-lsx_lleq_trans
-lsx_lpxs_trans
-lsx_lpx_trans
-lsx_lref_be
-lsx_lref_be_lpxs
-lsx_lref_free
-lsx_lref_skip
-lsx_lreq_conf
-lsx_lsxa
-lsx_sort
-ltail_length
-lw
-lw_pair
-minuss
-minuss_ge
-minuss_inv_cons1
-minuss_inv_cons1_aux
-minuss_inv_cons1_ge
-minuss_inv_cons1_lt
-minuss_inv_nil1
-minuss_inv_nil1_aux
-minuss_lt
-minuss_nil
-mk_gcp
-mk_gcr
-mk_sd
-mk_sh
-nexts_dec
-nexts_inj
-nexts_le
-nexts_lt
-nf
-nlift_bind_dx
-nlift_bind_sn
-nlift_flat_dx
-nlift_flat_sn
-nlift_inv_bind
-nlift_inv_flat
-nlift_inv_lref_be_SO
-nlift_lref_be_SO
-nlleq_inv_bind
-nlleq_inv_bind_O
-nlleq_inv_flat
-nlleq_lleq_div
-nllpx_sn_inv_bind
-nllpx_sn_inv_bind_O
-nllpx_sn_inv_flat
-Omega1
-Omega2
-pluss
-pluss_inv_cons2
-pluss_inv_nil2
-rfw
-rfw_lpair_dx
-rfw_lpair_sn
-rfw_shift
-rfw_tpair_dx
-rfw_tpair_sn
-ri2
-S1
-S2
-S3
-S4
-S5
-S6
-S7
-scpds
-scpds_aaa_conf
-scpds_conf_eq
-scpds_cpr_lpr_aux
-scpds_cprs_trans
-scpds_div
-scpds_fwd_cprs
-scpds_fwd_cpxs
-scpds_inv_abbr_abst
-scpds_inv_abst1
-scpds_inv_lift1
-scpds_inv_lstas_eq
-scpds_lift
-scpds_strap1
-scpds_strap2
-scpes
-scpes_aaa_mono
-scpes_canc_dx
-scpes_canc_sn
-scpes_cpr_lpr_aux
-scpes_inv_abst2
-scpes_inv_lstas_eq
-scpes_le_aux
-scpes_refl
-scpes_sym
-scpes_trans
-sd
-sd_d
-sd_d_correct
-sd_d_SS
-sd_O
-sd_SO
-sh
-sh_N
-shnv
-shnv_cast
-shnv_inv_cast
-shnv_inv_cast_aux
-shnv_inv_snv
-simple
-simple_atom
-simple_flat
-simple_inv_bind
-simple_inv_bind_aux
-simple_inv_pair
-simple_tsts_repl_dx
-simple_tsts_repl_sn
-snv
-snv_appl
-snv_bind
-snv_cast
-snv_cast_scpes
-snv_cpr_lpr
-snv_cpr_lpr_aux
-snv_cprs_lpr
-snv_cprs_lpr_aux
-snv_extended
-snv_fqu_conf
-snv_fqup_conf
-snv_fquq_conf
-snv_fqus_conf
-snv_fwd_aaa
-snv_fwd_da
-snv_fwd_fsb
-snv_fwd_lstas
-snv_inv_appl
-snv_inv_appl_aux
-snv_inv_bind
-snv_inv_bind_aux
-snv_inv_cast
-snv_inv_cast_aux
-snv_inv_gref
-snv_inv_gref_aux
-snv_inv_lift
-snv_inv_lref
-snv_inv_lref_aux
-snv_lift
-snv_lref
-snv_lstas
-snv_lstas_aux
-snv_preserve
-snv_restricted
-snv_shnv_cast
-snv_sort
-Sort
-sta_cprs_scpds
-sta_cpx
-sta_cpx_aux
-sta_fpb
-sta_fpbg
-sta_fpbq
-sta_fpbs
-sta_ldec
-TAtom
-TC_lpx_sn_fwd_length
-TC_lpx_sn_ind
-TC_lpx_sn_inv_atom1
-TC_lpx_sn_inv_atom2
-TC_lpx_sn_inv_lpx_sn_LTC
-TC_lpx_sn_inv_pair1
-TC_lpx_sn_inv_pair1_aux
-TC_lpx_sn_inv_pair2
-TC_lpx_sn_pair
-TC_lpx_sn_pair_refl
-term
-tir_atom
-tix_lref
-TPair
-tpr_cpr
-tprs_cprs
-trr_inv_atom
-trx_inv_atom
-tsts
-tsts_atom
-tsts_canc_dx
-tsts_canc_sn
-tsts_dec
-tsts_inv_atom1
-tsts_inv_atom1_aux
-tsts_inv_atom2
-tsts_inv_atom2_aux
-tsts_inv_bind_applv_simple
-tsts_inv_pair1
-tsts_inv_pair1_aux
-tsts_inv_pair2
-tsts_inv_pair2_aux
-tsts_pair
-tsts_refl
-tsts_sym
-tsts_trans
-tw
-tw_pos
-unfold
-unfold_bind
-unfold_flat
-unfold_lref
-unfold_sort
+"aaa"
+"aaa_abbr"
+"aaa_abst"
+"aaa_appl"
+"aaa_cast"
+"aaa_csx"
+"aaa_da"
+"aaa_fqu_conf"
+"aaa_fqup_conf"
+"aaa_fquq_conf"
+"aaa_fqus_conf"
+"aaa_fsb"
+"aaa_fsba"
+"aaa_ind_csx"
+"aaa_ind_csx_alt"
+"aaa_ind_csx_alt_aux"
+"aaa_ind_csx_aux"
+"aaa_ind_fpb"
+"aaa_ind_fpb_aux"
+"aaa_ind_fpbg"
+"aaa_ind_fpbg_aux"
+"aaa_inv_abbr"
+"aaa_inv_abbr_aux"
+"aaa_inv_abst"
+"aaa_inv_abst_aux"
+"aaa_inv_appl"
+"aaa_inv_appl_aux"
+"aaa_inv_cast"
+"aaa_inv_cast_aux"
+"aaa_inv_gref"
+"aaa_inv_gref_aux"
+"aaa_inv_lift"
+"aaa_inv_lref"
+"aaa_inv_lref_aux"
+"aaa_inv_sort"
+"aaa_inv_sort_aux"
+"aaa_lift"
+"aaa_lifts"
+"aaa_lleq_conf"
+"aaa_lref"
+"aaa_lstas"
+"aaa_mono"
+"aaa_sort"
+"aarity"
+"AAtom"
+"Abbr"
+"Abst"
+"acr"
+"acr_aaa"
+"acr_aaa_csubc_lifts"
+"acr_abst"
+"acr_gcr"
+"APair"
+"append"
+"append_assoc"
+"append_atom_sn"
+"append_inj_dx"
+"append_inj_sn"
+"append_inv_pair_dx"
+"append_inv_refl_dx"
+"append_length"
+"Appl"
+"ApplDelta"
+"ApplDelta_lift"
+"ApplOmega1"
+"ApplOmega2"
+"ApplOmega3"
+"applv"
+"applv_simple"
+"at"
+"at_ge"
+"at_inv_cons"
+"at_inv_cons_aux"
+"at_inv_cons_ge"
+"at_inv_cons_lt"
+"at_inv_nil"
+"at_inv_nil_aux"
+"at_lt"
+"at_mono"
+"at_nil"
+"bind2"
+"Bind2"
+"candidate"
+"Cast"
+"ceq"
+"cfun"
+"cir"
+"cir_appl"
+"cir_cnr"
+"cir_gref"
+"cir_ib2"
+"cir_inv_appl"
+"cir_inv_bind"
+"cir_inv_delta"
+"cir_inv_flat"
+"cir_inv_ib2"
+"cir_inv_lift"
+"cir_inv_ri2"
+"cir_lift"
+"cir_sort"
+"cix"
+"cix_appl"
+"cix_cnx"
+"cix_gref"
+"cix_ib2"
+"cix_inv_appl"
+"cix_inv_bind"
+"cix_inv_cir"
+"cix_inv_delta"
+"cix_inv_flat"
+"cix_inv_ib2"
+"cix_inv_lift"
+"cix_inv_ri2"
+"cix_inv_sort"
+"cix_lift"
+"cix_lref"
+"cix_sort"
+"cnr"
+"cnr_abst"
+"cnr_appl_simple"
+"cnr_dec"
+"cnr_inv_abbr"
+"cnr_inv_abst"
+"cnr_inv_appl"
+"cnr_inv_cir"
+"cnr_inv_crr"
+"cnr_inv_delta"
+"cnr_inv_eps"
+"cnr_inv_lift"
+"cnr_inv_zeta"
+"cnr_lift"
+"cnr_lref_abst"
+"cnr_lref_atom"
+"cnr_lref_free"
+"cnr_sort"
+"cnx"
+"cnx_abst"
+"cnx_appl_simple"
+"cnx_csx"
+"cnx_dec"
+"cnx_fwd_cnr"
+"cnx_inv_abbr"
+"cnx_inv_abst"
+"cnx_inv_appl"
+"cnx_inv_cix"
+"cnx_inv_crx"
+"cnx_inv_delta"
+"cnx_inv_eps"
+"cnx_inv_lift"
+"cnx_inv_sort"
+"cnx_inv_zeta"
+"cnx_lift"
+"cnx_lref_atom"
+"cnx_lref_free"
+"cnx_sort"
+"cnx_sort_iter"
+"CP0"
+"CP1"
+"CP2"
+"CP3"
+"cpc"
+"cpc_conf"
+"cpc_cpcs"
+"cpc_fwd_cpr"
+"cpc_refl"
+"cpcs"
+"cpcs_aaa_mono"
+"cpcs_bind1"
+"cpcs_bind2"
+"cpcs_bind_dx"
+"cpcs_bind_sn"
+"cpcs_canc_dx"
+"cpcs_canc_sn"
+"cpcs_cpr_conf"
+"cpcs_cpr_div"
+"cpcs_cprs_conf"
+"cpcs_cprs_div"
+"cpcs_cprs_dx"
+"cpcs_cprs_sn"
+"cpcs_cprs_strap1"
+"cpcs_cprs_strap2"
+"cpcs_cpr_strap1"
+"cpcs_cpr_strap2"
+"cpcs_flat"
+"cpcs_flat_dx_cpr_rev"
+"cpcs_ind"
+"cpcs_ind_dx"
+"cpcs_inv_abst1"
+"cpcs_inv_abst2"
+"cpcs_inv_abst_dx"
+"cpcs_inv_abst_sn"
+"cpcs_inv_cprs"
+"cpcs_inv_lift"
+"cpcs_inv_sort"
+"cpcs_inv_sort_abst"
+"cpcs_lift"
+"cpcs_refl"
+"cpcs_scpes"
+"cpcs_strap1"
+"cpcs_strap2"
+"cpcs_strip"
+"cpcs_sym"
+"cpcs_trans"
+"cpc_sym"
+"cpr"
+"cpr_aaa_conf"
+"cpr_ApplOmega_12"
+"cpr_ApplOmega_23"
+"cpr_atom"
+"cpr_beta"
+"cpr_bind"
+"cpr_bind2"
+"cpr_conf"
+"cpr_conf_lpr"
+"cpr_conf_lpr_atom_atom"
+"cpr_conf_lpr_atom_delta"
+"cpr_conf_lpr_beta_beta"
+"cpr_conf_lpr_bind_bind"
+"cpr_conf_lpr_bind_zeta"
+"cpr_conf_lpr_delta_delta"
+"cpr_conf_lpr_eps_eps"
+"cpr_conf_lpr_flat_beta"
+"cpr_conf_lpr_flat_eps"
+"cpr_conf_lpr_flat_flat"
+"cpr_conf_lpr_flat_theta"
+"cpr_conf_lpr_theta_theta"
+"cpr_conf_lpr_zeta_zeta"
+"cpr_cpcs_dx"
+"cpr_cpcs_sn"
+"cpr_cprs"
+"cpr_cprs_conf_cpcs"
+"cpr_cprs_div"
+"cpr_cpx"
+"cpr_delift"
+"cpr_delta"
+"cpr_div"
+"cpre"
+"cpre_mono"
+"cpr_eps"
+"cpr_flat"
+"cpr_fpb"
+"cpr_fpbq"
+"cpr_fwd_bind1_minus"
+"cpr_fwd_cir"
+"cpr_inv_abbr1"
+"cpr_inv_abst1"
+"cpr_inv_appl1"
+"cpr_inv_appl1_simple"
+"cpr_inv_atom1"
+"cpr_inv_atom1_aux"
+"cpr_inv_bind1"
+"cpr_inv_bind1_aux"
+"cpr_inv_cast1"
+"cpr_inv_flat1"
+"cpr_inv_flat1_aux"
+"cpr_inv_gref1"
+"cpr_inv_lift1"
+"cpr_inv_lref1"
+"cpr_inv_sort1"
+"cpr_lift"
+"cpr_llpx_sn_conf"
+"cpr_lpr_fpbs"
+"cpr_lpr_sta_fpbs"
+"cpr_Omega_12"
+"cpr_Omega_21"
+"cpr_pair_sn"
+"cpr_refl"
+"cprs"
+"cprs_aaa_conf"
+"cprs_beta"
+"cprs_beta_dx"
+"cprs_beta_rc"
+"cprs_bind"
+"cprs_bind2"
+"cprs_bind2_dx"
+"cprs_bind_dx"
+"cprs_conf"
+"cprs_conf_cpcs"
+"cprs_cpr_conf_cpcs"
+"cprs_cpr_div"
+"cprs_cpxs"
+"cprs_delta"
+"cprs_div"
+"cprs_eps"
+"cprs_flat"
+"cprs_flat_dx"
+"cprs_flat_sn"
+"cprs_fpbs"
+"cprs_ind"
+"cprs_ind_dx"
+"cprs_inv_abbr1"
+"cprs_inv_abst"
+"cprs_inv_abst1"
+"cprs_inv_appl1"
+"cprs_inv_cast1"
+"cprs_inv_cnr1"
+"cprs_inv_lift1"
+"cprs_inv_lref1"
+"cprs_inv_sort1"
+"cprs_lift"
+"cprs_lpr_conf_dx"
+"cprs_lpr_conf_sn"
+"cprs_refl"
+"cprs_scpds_div"
+"cprs_strap1"
+"cprs_strap2"
+"cprs_strip"
+"cprs_theta"
+"cprs_theta_dx"
+"cprs_theta_rc"
+"cprs_trans"
+"cprs_zeta"
+"cpr_theta"
+"cpr_zeta"
+"cpx"
+"cpx_aaa_conf"
+"cpx_atom"
+"cpx_beta"
+"cpx_bind"
+"cpx_bind2"
+"cpx_cpxs"
+"cpx_ct"
+"cpx_delift"
+"cpx_delta"
+"cpxe"
+"cpx_eps"
+"cpx_flat"
+"cpx_frees_trans"
+"cpx_fwd_bind1_minus"
+"cpx_fwd_cix"
+"cpx_inv_abbr1"
+"cpx_inv_abst1"
+"cpx_inv_appl1"
+"cpx_inv_appl1_simple"
+"cpx_inv_atom1"
+"cpx_inv_atom1_aux"
+"cpx_inv_bind1"
+"cpx_inv_bind1_aux"
+"cpx_inv_cast1"
+"cpx_inv_flat1"
+"cpx_inv_flat1_aux"
+"cpx_inv_gref1"
+"cpx_inv_lift1"
+"cpx_inv_lref1"
+"cpx_inv_lref1_ge"
+"cpx_inv_sort1"
+"cpx_lift"
+"cpx_lleq_conf"
+"cpx_lleq_conf_dx"
+"cpx_lleq_conf_sn"
+"cpx_llpx_sn_conf"
+"cpx_lpx_aaa_conf"
+"cpx_pair_sn"
+"cpx_refl"
+"cpxs"
+"cpxs_aaa_conf"
+"cpxs_ApplOmega_13"
+"cpxs_beta"
+"cpxs_beta_dx"
+"cpxs_beta_rc"
+"cpxs_bind"
+"cpxs_bind2"
+"cpxs_bind2_dx"
+"cpxs_bind_dx"
+"cpxs_ct"
+"cpxs_delta"
+"cpxs_eps"
+"cpxs_flat"
+"cpxs_flat_dx"
+"cpxs_flat_sn"
+"cpxs_fpbg"
+"cpxs_fpbs"
+"cpxs_fpbs_trans"
+"cpxs_fqup_fpbs"
+"cpxs_fqus_fpbs"
+"cpxs_fqus_lpxs_fpbs"
+"cpxs_fwd_beta"
+"cpxs_fwd_beta_vector"
+"cpxs_fwd_cast"
+"cpxs_fwd_cast_vector"
+"cpxs_fwd_cnx"
+"cpxs_fwd_cnx_vector"
+"cpxs_fwd_delta"
+"cpxs_fwd_delta_vector"
+"cpxs_fwd_sort"
+"cpxs_fwd_sort_vector"
+"cpxs_fwd_theta"
+"cpxs_fwd_theta_vector"
+"cpxs_ind"
+"cpxs_ind_dx"
+"cpxs_inv_abbr1"
+"cpxs_inv_abst1"
+"cpxs_inv_appl1"
+"cpxs_inv_cast1"
+"cpxs_inv_cnx1"
+"cpxs_inv_lift1"
+"cpxs_inv_lref1"
+"cpxs_inv_sort1"
+"cpxs_lift"
+"cpxs_lleq_conf"
+"cpxs_lleq_conf_dx"
+"cpxs_lleq_conf_sn"
+"cpxs_neq_inv_step_sn"
+"cpxs_pair_sn"
+"cpxs_refl"
+"cpxs_sort"
+"cpxs_strap1"
+"cpxs_strap2"
+"cpx_st"
+"cpxs_theta"
+"cpxs_theta_dx"
+"cpxs_theta_rc"
+"cpxs_trans"
+"cpxs_zeta"
+"cpx_theta"
+"cpx_zeta"
+"cpy"
+"cpy_atom"
+"cpy_bind"
+"cpy_conf_eq"
+"cpy_conf_neq"
+"cpy_cpys"
+"cpy_flat"
+"cpy_full"
+"cpy_fwd_nlift2_ge"
+"cpy_fwd_tw"
+"cpy_fwd_up"
+"cpy_inv_atom1"
+"cpy_inv_atom1_aux"
+"cpy_inv_bind1"
+"cpy_inv_bind1_aux"
+"cpy_inv_flat1"
+"cpy_inv_flat1_aux"
+"cpy_inv_gref1"
+"cpy_inv_lift1_be"
+"cpy_inv_lift1_be_up"
+"cpy_inv_lift1_eq"
+"cpy_inv_lift1_ge"
+"cpy_inv_lift1_ge_up"
+"cpy_inv_lift1_le"
+"cpy_inv_lift1_le_up"
+"cpy_inv_lref1"
+"cpy_inv_refl_O2"
+"cpy_inv_refl_O2_aux"
+"cpy_inv_sort1"
+"cpy_lift_be"
+"cpy_lift_ge"
+"cpy_lift_le"
+"cpy_refl"
+"cpys"
+"cpysa"
+"cpysa_atom"
+"cpysa_bind"
+"cpysa_cpy_trans"
+"cpysa_flat"
+"cpysa_inv_cpys"
+"cpys_antisym_eq"
+"cpysa_refl"
+"cpysa_subst"
+"cpys_bind"
+"cpys_conf_eq"
+"cpys_conf_neq"
+"cpys_cpysa"
+"cpys_flat"
+"cpys_fwd_tw"
+"cpys_fwd_up"
+"cpys_ind"
+"cpys_ind_alt"
+"cpys_ind_dx"
+"cpys_inv_atom1"
+"cpys_inv_bind1"
+"cpys_inv_flat1"
+"cpys_inv_gref1"
+"cpys_inv_lift1_be"
+"cpys_inv_lift1_be_up"
+"cpys_inv_lift1_eq"
+"cpys_inv_lift1_ge"
+"cpys_inv_lift1_ge_up"
+"cpys_inv_lift1_le"
+"cpys_inv_lift1_le_up"
+"cpys_inv_lift1_subst"
+"cpys_inv_lift1_up"
+"cpys_inv_lref1"
+"cpys_inv_lref1_drop"
+"cpys_inv_lref1_Y2"
+"cpys_inv_refl_O2"
+"cpys_inv_SO2"
+"cpys_inv_sort1"
+"cpys_lift_be"
+"cpys_lift_ge"
+"cpys_lift_le"
+"cpy_split_down"
+"cpy_split_up"
+"cpys_refl"
+"cpys_split_up"
+"cpys_strap1"
+"cpys_strap1_down"
+"cpys_strap2"
+"cpys_strap2_down"
+"cpys_strip_eq"
+"cpys_strip_neq"
+"cpys_subst"
+"cpys_subst_Y2"
+"cpys_trans_down"
+"cpys_trans_eq"
+"cpy_subst"
+"cpys_weak"
+"cpys_weak_full"
+"cpys_weak_top"
+"cpy_trans_down"
+"cpy_trans_ge"
+"cpy_weak"
+"cpy_weak_full"
+"cpy_weak_top"
+"crr"
+"crr_appl_dx"
+"crr_appl_sn"
+"crr_beta"
+"crr_crx"
+"crr_delta"
+"crr_ib2_dx"
+"crr_ib2_sn"
+"crr_inv_appl"
+"crr_inv_appl_aux"
+"crr_inv_gref"
+"crr_inv_gref_aux"
+"crr_inv_ib2"
+"crr_inv_ib2_aux"
+"crr_inv_lift"
+"crr_inv_lref"
+"crr_inv_lref_aux"
+"crr_inv_sort"
+"crr_inv_sort_aux"
+"crr_lift"
+"crr_ri2"
+"crr_theta"
+"crx"
+"crx_appl_dx"
+"crx_appl_sn"
+"crx_beta"
+"crx_delta"
+"crx_ib2_dx"
+"crx_ib2_sn"
+"crx_inv_appl"
+"crx_inv_appl_aux"
+"crx_inv_gref"
+"crx_inv_gref_aux"
+"crx_inv_ib2"
+"crx_inv_ib2_aux"
+"crx_inv_lift"
+"crx_inv_lref"
+"crx_inv_lref_aux"
+"crx_inv_sort"
+"crx_inv_sort_aux"
+"crx_lift"
+"crx_ri2"
+"crx_sort"
+"crx_theta"
+"csx"
+"csxa"
+"csx_abbr"
+"csx_abst"
+"csxa_cpxs_trans"
+"csxa_csx"
+"csxa_ind"
+"csxa_intro"
+"csxa_intro_aux"
+"csxa_intro_cpx"
+"csx_appl_beta"
+"csx_appl_beta_aux"
+"csx_appl_simple"
+"csx_appl_simple_tsts"
+"csx_appl_theta"
+"csx_appl_theta_aux"
+"csx_applv_beta"
+"csx_applv_cast"
+"csx_applv_cnx"
+"csx_applv_delta"
+"csx_applv_sort"
+"csx_applv_theta"
+"csx_cast"
+"csx_cpre"
+"csx_cpxe"
+"csx_cpxs_trans"
+"csx_cpx_trans"
+"csx_csxa"
+"csx_fpb_conf"
+"csx_fpbs_conf"
+"csx_fqu_conf"
+"csx_fqup_conf"
+"csx_fquq_conf"
+"csx_fqus_conf"
+"csx_fsb"
+"csx_fsb_fpbs"
+"csx_fwd_applv"
+"csx_fwd_bind"
+"csx_fwd_bind_dx"
+"csx_fwd_bind_dx_aux"
+"csx_fwd_flat"
+"csx_fwd_flat_dx"
+"csx_fwd_flat_dx_aux"
+"csx_fwd_pair_sn"
+"csx_fwd_pair_sn_aux"
+"csx_gcp"
+"csx_gcr"
+"csx_ind"
+"csx_ind_alt"
+"csx_ind_fpb"
+"csx_ind_fpbg"
+"csx_intro"
+"csx_intro_cpxs"
+"csx_inv_lift"
+"csx_inv_lref_bind"
+"csx_lift"
+"csx_lleq_conf"
+"csx_lleq_trans"
+"csx_lpx_conf"
+"csx_lpxs_conf"
+"csx_lref_bind"
+"csx_lsx"
+"csx_sort"
+"csxv"
+"csxv_inv_cons"
+"d1_liftable_liftables"
+"d1_liftables_liftables_all"
+"da"
+"da_bind"
+"da_cpr_lpr"
+"da_cpr_lpr_aux"
+"da_cprs_lpr"
+"da_cprs_lpr_aux"
+"da_flat"
+"da_inv_bind"
+"da_inv_bind_aux"
+"da_inv_flat"
+"da_inv_flat_aux"
+"da_inv_gref"
+"da_inv_gref_aux"
+"da_inv_lift"
+"da_inv_lref"
+"da_inv_lref_aux"
+"da_inv_sort"
+"da_inv_sort_aux"
+"da_ldec"
+"da_ldef"
+"da_lift"
+"da_lstas"
+"da_mono"
+"d_appendable_sn"
+"da_scpds_lpr_aux"
+"da_scpes_aux"
+"da_sort"
+"d_deliftable_sn"
+"d_deliftable_sn_llstar"
+"d_deliftable_sn_LTC"
+"dedropable_sn"
+"dedropable_sn_TC"
+"deg_inv_prec"
+"deg_inv_pred"
+"deg_iter"
+"deg_next_SO"
+"deg_O"
+"deg_SO"
+"deg_SO_gt"
+"deg_SO_inv_pos"
+"deg_SO_inv_pos_aux"
+"deg_SO_pos"
+"deg_SO_refl"
+"deg_SO_zero"
+"Delta"
+"Delta_lift"
+"destruct_apair_apair_aux"
+"destruct_lpair_lpair_aux"
+"destruct_sort_sort_aux"
+"destruct_tatom_tatom_aux"
+"destruct_tpair_tpair_aux"
+"discr_apair_xy_x"
+"discr_apair_xy_y"
+"discr_lpair_x_xy"
+"discr_tpair_xy_x"
+"discr_tpair_xy_y"
+"d_liftable"
+"d_liftable1"
+"d_liftable_llstar"
+"d_liftable_LTC"
+"d_liftables1"
+"d_liftables1_all"
+"drop"
+"dropable_dx"
+"dropable_dx_TC"
+"dropable_sn"
+"dropable_sn_TC"
+"drop_atom"
+"drop_conf_be"
+"drop_conf_div"
+"drop_conf_ge"
+"drop_conf_le"
+"drop_conf_lt"
+"drop_drop"
+"drop_drop_lt"
+"drop_FT"
+"drop_fwd_be"
+"drop_fwd_drop2"
+"drop_fwd_length"
+"drop_fwd_length_eq1"
+"drop_fwd_length_eq2"
+"drop_fwd_length_ge"
+"drop_fwd_length_le2"
+"drop_fwd_length_le4"
+"drop_fwd_length_le_ge"
+"drop_fwd_length_le_le"
+"drop_fwd_length_lt2"
+"drop_fwd_length_lt4"
+"drop_fwd_length_minus2"
+"drop_fwd_length_minus4"
+"drop_fwd_lw"
+"drop_fwd_lw_lt"
+"drop_fwd_rfw"
+"drop_gen"
+"drop_inv_atom1"
+"drop_inv_atom1_aux"
+"drop_inv_drop1"
+"drop_inv_drop1_lt"
+"drop_inv_FT"
+"drop_inv_FT_aux"
+"drop_inv_gen"
+"drop_inv_length_eq"
+"drop_inv_O1_gt"
+"drop_inv_O1_pair1"
+"drop_inv_O1_pair1_aux"
+"drop_inv_O1_pair2"
+"drop_inv_O2"
+"drop_inv_O2_aux"
+"drop_inv_pair1"
+"drop_inv_refl"
+"drop_inv_skip1"
+"drop_inv_skip1_aux"
+"drop_inv_skip2"
+"drop_inv_skip2_aux"
+"drop_inv_T"
+"drop_lprs_trans"
+"drop_lpr_trans"
+"drop_lpxs_trans"
+"drop_lpx_trans"
+"drop_lsubc_trans"
+"drop_mono"
+"drop_O1_append_sn_le"
+"drop_O1_append_sn_le_aux"
+"drop_O1_eq"
+"drop_O1_ex"
+"drop_O1_ge"
+"drop_O1_inj"
+"drop_O1_inv_append1_ge"
+"drop_O1_inv_append1_le"
+"drop_O1_le"
+"drop_O1_lt"
+"drop_O1_pair"
+"drop_pair"
+"drop_refl"
+"drop_refl_atom_O2"
+"drops"
+"drops_cons"
+"drops_drop_trans"
+"drops_inv_cons"
+"drops_inv_cons_aux"
+"drops_inv_nil"
+"drops_inv_nil_aux"
+"drops_inv_skip2"
+"drop_skip"
+"drop_skip_lt"
+"drops_lsubc_trans"
+"drops_nil"
+"drop_split"
+"drops_skip"
+"drops_trans"
+"drop_T"
+"drop_trans_ge"
+"drop_trans_ge_comm"
+"drop_trans_le"
+"drop_trans_lt"
+"eq_aarity_dec"
+"eq_bind2_dec"
+"eq_false_inv_tpair_dx"
+"eq_false_inv_tpair_sn"
+"eq_flat2_dec"
+"eq_genv_dec"
+"eq_item0_dec"
+"eq_item2_dec"
+"eq_lenv_dec"
+"eq_term_dec"
+"flat2"
+"Flat2"
+"fleq"
+"fleq_canc_dx"
+"fleq_canc_sn"
+"fleq_fpbg_trans"
+"fleq_fpbq"
+"fleq_fpbs"
+"fleq_fpb_trans"
+"fleq_intro"
+"fleq_inv_gen"
+"fleq_refl"
+"fleq_sym"
+"fleq_trans"
+"fpb"
+"fpb_cpx"
+"fpb_fpbg"
+"fpb_fpbg_trans"
+"fpb_fpbq"
+"fpb_fpbq_alt"
+"fpb_fpbs"
+"fpb_fpbsa_trans"
+"fpb_fqu"
+"fpbg"
+"fpbg_fleq_trans"
+"fpbg_fpbq_trans"
+"fpbg_fpbs_trans"
+"fpbg_fwd_fpbs"
+"fpbg_refl"
+"fpbg_trans"
+"fpb_inv_fleq"
+"fpb_lpx"
+"fpbq"
+"fpbqa"
+"fpbq_aaa_conf"
+"fpbqa_inv_fpbq"
+"fpbq_cpx"
+"fpbq_fpbg_trans"
+"fpbq_fpbqa"
+"fpbq_fpbs"
+"fpbq_fquq"
+"fpbq_ind_alt"
+"fpbq_inv_fpb_alt"
+"fpbq_lleq"
+"fpbq_lpx"
+"fpbq_refl"
+"fpbs"
+"fpbsa"
+"fpbs_aaa_conf"
+"fpbsa_inv_fpbs"
+"fpbs_cpxs_trans"
+"fpbs_cpx_trans_neq"
+"fpbs_fpbg"
+"fpbs_fpbg_trans"
+"fpbs_fpbsa"
+"fpbs_fpb_trans"
+"fpbs_fqup_trans"
+"fpbs_fqus_trans"
+"fpbs_ind"
+"fpbs_ind_dx"
+"fpbs_intro_alt"
+"fpbs_inv_alt"
+"fpbs_lleq_trans"
+"fpbs_lpxs_trans"
+"fpbs_refl"
+"fpbs_strap1"
+"fpbs_strap2"
+"fpbs_trans"
+"fqu"
+"fqu_bind_dx"
+"fqu_cpr_trans_dx"
+"fqu_cpr_trans_sn"
+"fqu_cpxs_trans"
+"fqu_cpxs_trans_neq"
+"fqu_cpx_trans"
+"fqu_cpx_trans_neq"
+"fqu_drop"
+"fqu_drop_lt"
+"fqu_flat_dx"
+"fqu_fqup"
+"fqu_fquq"
+"fqu_fwd_fw"
+"fqu_fwd_length_lref1"
+"fqu_fwd_length_lref1_aux"
+"fqu_inv_eq"
+"fqu_inv_eq_aux"
+"fqu_lpr_trans"
+"fqu_lpx_trans"
+"fqu_lref_O"
+"fqu_lref_S_lt"
+"fqup"
+"fqu_pair_sn"
+"fqup_ApplOmega_13"
+"fqup_bind_dx"
+"fqup_bind_dx_flat_dx"
+"fqup_cpxs_trans"
+"fqup_cpxs_trans_neq"
+"fqup_cpx_trans"
+"fqup_cpx_trans_neq"
+"fqup_drop"
+"fqup_flat_dx"
+"fqup_flat_dx_bind_dx"
+"fqup_flat_dx_pair_sn"
+"fqup_fpbg"
+"fqup_fpbs"
+"fqup_fqus"
+"fqup_fqus_trans"
+"fqup_fwd_fw"
+"fqup_ind"
+"fqup_ind_dx"
+"fqup_inv_step_sn"
+"fqup_lref"
+"fqup_pair_sn"
+"fqup_strap1"
+"fqup_strap2"
+"fqup_trans"
+"fqup_wf_ind"
+"fqup_wf_ind_eq"
+"fquq"
+"fquqa"
+"fquqa_drop"
+"fquqa_inv_fquq"
+"fquqa_refl"
+"fquq_bind_dx"
+"fquq_cpr_trans_dx"
+"fquq_cpr_trans_sn"
+"fquq_cpxs_trans"
+"fquq_cpxs_trans_neq"
+"fquq_cpx_trans"
+"fquq_cpx_trans_neq"
+"fquq_drop"
+"fquq_flat_dx"
+"fquq_fquqa"
+"fquq_fqus"
+"fquq_fwd_fw"
+"fquq_fwd_length_lref1"
+"fquq_fwd_length_lref1_aux"
+"fquq_inv_gen"
+"fquq_lpr_trans"
+"fquq_lpx_trans"
+"fquq_lref_O"
+"fquq_lstas_trans"
+"fquq_pair_sn"
+"fquq_refl"
+"fquq_sta_trans"
+"fqus"
+"fqus_cpxs_trans"
+"fqus_cpxs_trans_neq"
+"fqus_cpx_trans"
+"fqus_cpx_trans_neq"
+"fqus_drop"
+"fqus_fpbs"
+"fqus_fpbs_trans"
+"fqus_fqup_trans"
+"fqus_fwd_fw"
+"fqus_ind"
+"fqus_ind_dx"
+"fqus_inv_gen"
+"fqus_lpxs_fpbs"
+"fqus_lstas_trans"
+"fqus_refl"
+"fqus_strap1"
+"fqus_strap1_fqu"
+"fqus_strap2"
+"fqus_strap2_fqu"
+"fqu_sta_trans"
+"fqus_trans"
+"fqu_wf_ind"
+"frees"
+"frees_append"
+"frees_be"
+"frees_bind_dx"
+"frees_bind_dx_O"
+"frees_bind_sn"
+"frees_dec"
+"frees_eq"
+"frees_flat_dx"
+"frees_flat_sn"
+"frees_inv"
+"frees_inv_append"
+"frees_inv_append_aux"
+"frees_inv_bind"
+"frees_inv_bind_O"
+"frees_inv_flat"
+"frees_inv_gref"
+"frees_inv_lift_be"
+"frees_inv_lift_ge"
+"frees_inv_lref"
+"frees_inv_lref_free"
+"frees_inv_lref_ge"
+"frees_inv_lref_lt"
+"frees_inv_lref_skip"
+"frees_inv_sort"
+"frees_lift_ge"
+"frees_lref_be"
+"frees_lref_eq"
+"frees_lreq_conf"
+"frees_S"
+"frees_trans"
+"frees_weak"
+"fsb"
+"fsba"
+"fsba_fpbs_trans"
+"fsba_ind_alt"
+"fsba_intro"
+"fsba_inv_fsb"
+"fsb_fpbs_trans"
+"fsb_fsba"
+"fsb_ind_alt"
+"fsb_ind_fpbg"
+"fsb_intro"
+"fsb_inv_csx"
+"fw"
+"fw_lpair_sn"
+"fw_shift"
+"fw_tpair_dx"
+"fw_tpair_sn"
+"gcp"
+"gcp0_lifts"
+"gcp2_lifts"
+"gcp2_lifts_all"
+"gcr"
+"gcr_aaa"
+"gcr_lift"
+"gcr_lifts"
+"genv"
+"gget"
+"gget_dec"
+"gget_eq"
+"gget_gt"
+"gget_inv_eq"
+"gget_inv_gt"
+"gget_inv_lt"
+"gget_inv_lt_aux"
+"gget_lt"
+"gget_mono"
+"gget_total"
+"GRef"
+"ib2"
+"IH_da_cpr_lpr"
+"IH_lstas_cpr_lpr"
+"IH_snv_cpr_lpr"
+"IH_snv_lstas"
+"is_lift_dec"
+"item0"
+"item2"
+"LAtom"
+"lcosx"
+"lcosx_drop_trans_lt"
+"lcosx_inv_pair"
+"lcosx_inv_succ"
+"lcosx_inv_succ_aux"
+"lcosx_O"
+"lcosx_pair"
+"lcosx_skip"
+"lcosx_sort"
+"length"
+"length_inv_pos_dx"
+"length_inv_pos_dx_ltail"
+"length_inv_pos_sn"
+"length_inv_pos_sn_ltail"
+"length_inv_zero_dx"
+"length_inv_zero_sn"
+"lenv"
+"lenv_ind_alt"
+"lift"
+"lift_bind"
+"lift_conf_be"
+"lift_conf_O1"
+"lift_div_be"
+"lift_div_le"
+"lift_flat"
+"lift_fwd_pair1"
+"lift_fwd_pair2"
+"lift_fwd_tw"
+"lift_gref"
+"lift_inj"
+"lift_inv_bind1"
+"lift_inv_bind1_aux"
+"lift_inv_bind2"
+"lift_inv_bind2_aux"
+"lift_inv_flat1"
+"lift_inv_flat1_aux"
+"lift_inv_flat2"
+"lift_inv_flat2_aux"
+"lift_inv_gref1"
+"lift_inv_gref1_aux"
+"lift_inv_gref2"
+"lift_inv_gref2_aux"
+"lift_inv_lref1"
+"lift_inv_lref1_aux"
+"lift_inv_lref1_ge"
+"lift_inv_lref1_lt"
+"lift_inv_lref2"
+"lift_inv_lref2_aux"
+"lift_inv_lref2_be"
+"lift_inv_lref2_ge"
+"lift_inv_lref2_lt"
+"lift_inv_O2"
+"lift_inv_O2_aux"
+"lift_inv_pair_xy_x"
+"lift_inv_pair_xy_y"
+"lift_inv_sort1"
+"lift_inv_sort1_aux"
+"lift_inv_sort2"
+"lift_inv_sort2_aux"
+"lift_lref_ge"
+"lift_lref_ge_minus"
+"lift_lref_ge_minus_eq"
+"lift_lref_lt"
+"lift_mono"
+"lift_refl"
+"lifts"
+"lifts_applv"
+"lifts_bind"
+"lifts_cons"
+"lifts_flat"
+"lift_simple_dx"
+"lift_simple_sn"
+"lifts_inv_applv1"
+"lifts_inv_bind1"
+"lifts_inv_cons"
+"lifts_inv_cons_aux"
+"lifts_inv_flat1"
+"lifts_inv_gref1"
+"lifts_inv_lref1"
+"lifts_inv_nil"
+"lifts_inv_nil_aux"
+"lifts_inv_sort1"
+"lifts_lift_trans"
+"lifts_lift_trans_le"
+"lifts_nil"
+"lift_sort"
+"lift_split"
+"lifts_simple_dx"
+"lifts_simple_sn"
+"lifts_total"
+"lifts_trans"
+"liftsv"
+"liftsv_cons"
+"liftsv_liftv_trans_le"
+"liftsv_nil"
+"lift_total"
+"lift_trans_be"
+"lift_trans_ge"
+"lift_trans_le"
+"liftv"
+"liftv_cons"
+"liftv_inv_cons1"
+"liftv_inv_cons1_aux"
+"liftv_inv_nil1"
+"liftv_inv_nil1_aux"
+"liftv_mono"
+"liftv_nil"
+"liftv_total"
+"lleq"
+"lleq_aaa_trans"
+"lleq_bind"
+"lleq_bind_O"
+"lleq_bind_repl_O"
+"lleq_bind_repl_SO"
+"lleq_canc_dx"
+"lleq_canc_sn"
+"lleq_cpxs_trans"
+"lleq_cpx_trans"
+"lleq_dec"
+"lleq_flat"
+"lleq_fpbs"
+"lleq_fpbs_trans"
+"lleq_fpb_trans"
+"lleq_fqup_trans"
+"lleq_fquq_trans"
+"lleq_fqus_trans"
+"lleq_fqu_trans"
+"lleq_free"
+"lleq_fwd_bind_dx"
+"lleq_fwd_bind_O_dx"
+"lleq_fwd_bind_sn"
+"lleq_fwd_drop_dx"
+"lleq_fwd_drop_sn"
+"lleq_fwd_flat_dx"
+"lleq_fwd_flat_sn"
+"lleq_fwd_length"
+"lleq_fwd_lref"
+"lleq_fwd_lref_dx"
+"lleq_fwd_lref_sn"
+"lleq_ge"
+"lleq_ge_up"
+"lleq_gref"
+"lleq_ind"
+"lleq_ind_alt_r"
+"lleq_intro_alt"
+"lleq_intro_alt_r"
+"lleq_inv_alt"
+"lleq_inv_alt_r"
+"lleq_inv_bind"
+"lleq_inv_bind_O"
+"lleq_inv_flat"
+"lleq_inv_lift_be"
+"lleq_inv_lift_ge"
+"lleq_inv_lift_le"
+"lleq_inv_lref_ge"
+"lleq_inv_lref_ge_bi"
+"lleq_inv_lref_ge_dx"
+"lleq_inv_lref_ge_sn"
+"lleq_inv_S"
+"lleq_lift_ge"
+"lleq_lift_le"
+"lleq_llpx_sn_conf"
+"lleq_llpx_sn_trans"
+"lleq_lpxs_trans"
+"lleq_lpx_trans"
+"lleq_lref"
+"lleq_lreq_repl"
+"lleq_lreq_trans"
+"lleq_nlleq_trans"
+"lleq_refl"
+"lleq_skip"
+"lleq_sort"
+"lleq_sym"
+"lleq_trans"
+"lleq_transitive"
+"lleq_Y"
+"llor"
+"llor_atom"
+"llor_skip"
+"llor_tail_cofrees"
+"llor_tail_frees"
+"llor_total"
+"llpx_sn"
+"llpx_sn_alt"
+"llpx_sn_alt_inv_llpx_sn"
+"llpx_sn_alt_r"
+"llpx_sn_alt_r_bind"
+"llpx_sn_alt_r_flat"
+"llpx_sn_alt_r_free"
+"llpx_sn_alt_r_fwd_length"
+"llpx_sn_alt_r_fwd_lref"
+"llpx_sn_alt_r_gref"
+"llpx_sn_alt_r_ind_alt"
+"llpx_sn_alt_r_intro"
+"llpx_sn_alt_r_intro_alt"
+"llpx_sn_alt_r_inv_alt"
+"llpx_sn_alt_r_inv_bind"
+"llpx_sn_alt_r_inv_flat"
+"llpx_sn_alt_r_inv_lpx_sn"
+"llpx_sn_alt_r_lref"
+"llpx_sn_alt_r_skip"
+"llpx_sn_alt_r_sort"
+"llpx_sn_bind"
+"llpx_sn_bind_O"
+"llpx_sn_bind_repl_O"
+"llpx_sn_bind_repl_SO"
+"llpx_sn_co"
+"llpx_sn_dec"
+"llpx_sn_drop_conf_O"
+"llpx_sn_drop_trans_O"
+"llpx_sn_flat"
+"llpx_sn_free"
+"llpx_sn_frees_trans"
+"llpx_sn_frees_trans_aux"
+"llpx_sn_fwd_bind_dx"
+"llpx_sn_fwd_bind_O_dx"
+"llpx_sn_fwd_bind_sn"
+"llpx_sn_fwd_drop_dx"
+"llpx_sn_fwd_drop_sn"
+"llpx_sn_fwd_flat_dx"
+"llpx_sn_fwd_flat_sn"
+"llpx_sn_fwd_length"
+"llpx_sn_fwd_lref"
+"llpx_sn_fwd_lref_aux"
+"llpx_sn_fwd_lref_dx"
+"llpx_sn_fwd_lref_sn"
+"llpx_sn_fwd_pair_sn"
+"llpx_sn_ge"
+"llpx_sn_ge_up"
+"llpx_sn_gref"
+"llpx_sn_ind_alt_r"
+"llpx_sn_intro_alt_r"
+"llpx_sn_inv_alt_r"
+"llpx_sn_inv_bind"
+"llpx_sn_inv_bind_aux"
+"llpx_sn_inv_bind_O"
+"llpx_sn_inv_flat"
+"llpx_sn_inv_flat_aux"
+"llpx_sn_inv_lift_be"
+"llpx_sn_inv_lift_ge"
+"llpx_sn_inv_lift_le"
+"llpx_sn_inv_lift_O"
+"llpx_sn_inv_lref_ge_bi"
+"llpx_sn_inv_lref_ge_dx"
+"llpx_sn_inv_lref_ge_sn"
+"llpx_sn_inv_S"
+"llpx_sn_inv_S_aux"
+"llpx_sn_lift_ge"
+"llpx_sn_lift_le"
+"llpx_sn_llor_dx"
+"llpx_sn_llor_dx_sym"
+"llpx_sn_llor_fwd_sn"
+"llpx_sn_llpx_sn_alt"
+"llpx_sn_lpx_sn_alt_r"
+"llpx_sn_lref"
+"llpx_sn_lrefl"
+"llpx_sn_lreq_repl"
+"llpx_sn_lreq_trans"
+"llpx_sn_refl"
+"llpx_sn_skip"
+"llpx_sn_sort"
+"llpx_sn_TC_pair_dx"
+"llpx_sn_Y"
+"LPair"
+"lpair_ltail"
+"lpr"
+"lpr_aaa_conf"
+"lpr_conf"
+"lpr_cpcs_conf"
+"lpr_cpcs_trans"
+"lpr_cpr_conf"
+"lpr_cpr_conf_dx"
+"lpr_cpr_conf_sn"
+"lpr_cprs_conf"
+"lpr_cprs_trans"
+"lpr_cpr_trans"
+"lpr_drop_conf"
+"lpr_drop_trans_O1"
+"lpr_fpb"
+"lpr_fpbq"
+"lpr_fwd_length"
+"lpr_inv_atom1"
+"lpr_inv_atom2"
+"lpr_inv_pair1"
+"lpr_inv_pair2"
+"lpr_lprs"
+"lpr_lpx"
+"lpr_pair"
+"lpr_refl"
+"lprs"
+"lprs_aaa_conf"
+"lprs_conf"
+"lprs_cpcs_trans"
+"lprs_cpr_conf_dx"
+"lprs_cpr_conf_sn"
+"lprs_cprs_conf"
+"lprs_cprs_conf_dx"
+"lprs_cprs_conf_sn"
+"lprs_cprs_trans"
+"lprs_cpr_trans"
+"lprs_drop_conf"
+"lprs_drop_trans_O1"
+"lprs_fpbs"
+"lprs_fwd_length"
+"lprs_ind"
+"lprs_ind_alt"
+"lprs_ind_dx"
+"lprs_inv_atom1"
+"lprs_inv_atom2"
+"lprs_inv_pair1"
+"lprs_inv_pair2"
+"lprs_lpxs"
+"lprs_pair"
+"lprs_pair2"
+"lprs_pair_refl"
+"lprs_refl"
+"lprs_strap1"
+"lprs_strap2"
+"lprs_strip"
+"lprs_trans"
+"lpx"
+"lpx_aaa_conf"
+"lpx_cpx_frees_trans"
+"lpx_cpxs_trans"
+"lpx_cpx_trans"
+"lpx_drop_conf"
+"lpx_drop_trans_O1"
+"lpx_fqup_trans"
+"lpx_fquq_trans"
+"lpx_fqus_trans"
+"lpx_fqu_trans"
+"lpx_frees_trans"
+"lpx_fwd_length"
+"lpx_inv_atom1"
+"lpx_inv_atom2"
+"lpx_inv_pair"
+"lpx_inv_pair1"
+"lpx_inv_pair2"
+"lpx_lleq_fqup_trans"
+"lpx_lleq_fquq_trans"
+"lpx_lleq_fqus_trans"
+"lpx_lleq_fqu_trans"
+"lpx_lpxs"
+"lpx_pair"
+"lpx_refl"
+"lpxs"
+"lpxs_aaa_conf"
+"lpxs_cpxs_trans"
+"lpxs_cpx_trans"
+"lpxs_drop_conf"
+"lpxs_drop_trans_O1"
+"lpxs_fpbg"
+"lpxs_fpbs"
+"lpxs_fpbs_trans"
+"lpxs_fqup_trans"
+"lpxs_fquq_trans"
+"lpxs_fqus_trans"
+"lpxs_fwd_length"
+"lpxs_ind"
+"lpxs_ind_alt"
+"lpxs_ind_dx"
+"lpxs_inv_atom1"
+"lpxs_inv_atom2"
+"lpxs_inv_pair1"
+"lpxs_inv_pair2"
+"lpxs_lleq_fpbs"
+"lpxs_lleq_fqup_trans"
+"lpxs_lleq_fquq_trans"
+"lpxs_lleq_fqus_trans"
+"lpxs_lleq_fqu_trans"
+"lpx_sn"
+"lpx_sn_alt"
+"lpx_sn_alt_atom"
+"lpx_sn_alt_fwd_length"
+"lpx_sn_alt_inv_atom1"
+"lpx_sn_alt_inv_atom2"
+"lpx_sn_alt_inv_lpx_sn"
+"lpx_sn_alt_inv_pair1"
+"lpx_sn_alt_inv_pair2"
+"lpx_sn_alt_pair"
+"lpx_sn_atom"
+"lpx_sn_conf"
+"lpx_sn_confluent"
+"lpx_sn_deliftable_dropable"
+"lpx_sn_dropable"
+"lpx_sn_dropable_aux"
+"lpx_sn_drop_conf"
+"lpx_sn_drop_trans"
+"lpx_sn_fwd_length"
+"lpx_sn_intro_alt"
+"lpx_sn_inv_alt"
+"lpx_sn_inv_atom1"
+"lpx_sn_inv_atom1_aux"
+"lpx_sn_inv_atom2"
+"lpx_sn_inv_atom2_aux"
+"lpx_sn_inv_pair"
+"lpx_sn_inv_pair1"
+"lpx_sn_inv_pair1_aux"
+"lpx_sn_inv_pair2"
+"lpx_sn_inv_pair2_aux"
+"lpx_sn_liftable_dedropable"
+"lpxs_nlleq_inv_step_sn"
+"lpx_sn_llpx_sn"
+"lpx_sn_lpx_sn_alt"
+"lpx_sn_LTC_TC_lpx_sn"
+"lpx_sn_pair"
+"lpx_sn_refl"
+"lpx_sn_trans"
+"lpx_sn_transitive"
+"lpxs_pair"
+"lpxs_pair2"
+"lpxs_pair_refl"
+"lpxs_refl"
+"lpxs_strap1"
+"lpxs_strap2"
+"lpxs_trans"
+"LRef"
+"lreq"
+"lreq_atom"
+"lreq_canc_dx"
+"lreq_canc_sn"
+"lreq_cpxs_trans"
+"lreq_cpx_trans"
+"lreq_drop_conf_be"
+"lreq_drop_trans_be"
+"lreq_frees_trans"
+"lreq_fwd_length"
+"lreq_inv_atom1"
+"lreq_inv_atom1_aux"
+"lreq_inv_atom2"
+"lreq_inv_O_Y"
+"lreq_inv_O_Y_aux"
+"lreq_inv_pair"
+"lreq_inv_pair1"
+"lreq_inv_pair1_aux"
+"lreq_inv_pair2"
+"lreq_inv_succ"
+"lreq_inv_succ1"
+"lreq_inv_succ1_aux"
+"lreq_inv_succ2"
+"lreq_inv_zero1"
+"lreq_inv_zero1_aux"
+"lreq_inv_zero2"
+"lreq_join"
+"lreq_lleq_trans"
+"lreq_llpx_sn_trans"
+"lreq_lpxs_trans_lleq"
+"lreq_lpxs_trans_lleq_aux"
+"lreq_lpx_trans_lleq"
+"lreq_lpx_trans_lleq_aux"
+"lreq_O2"
+"lreq_pair"
+"lreq_pair_lt"
+"lreq_pair_O_Y"
+"lreq_refl"
+"lreq_succ"
+"lreq_succ_lt"
+"lreq_sym"
+"lreq_trans"
+"lreq_zero"
+"lstas"
+"lstas_aaa_conf"
+"lstas_appl"
+"lstas_bind"
+"lstas_cast"
+"lstas_conf"
+"lstas_conf_le"
+"lstas_correct"
+"lstas_cpcs_lpr"
+"lstas_cpr"
+"lstas_cpr_aux"
+"lstas_cpr_lpr"
+"lstas_cpr_lpr_aux"
+"lstas_cprs_lpr"
+"lstas_cprs_lpr_aux"
+"lstas_cpxs"
+"lstas_da_conf"
+"lstas_fpbg"
+"lstas_fpbs"
+"lstas_inv_appl1"
+"lstas_inv_appl1_aux"
+"lstas_inv_bind1"
+"lstas_inv_bind1_aux"
+"lstas_inv_cast1"
+"lstas_inv_cast1_aux"
+"lstas_inv_da"
+"lstas_inv_da_ge"
+"lstas_inv_gref1"
+"lstas_inv_gref1_aux"
+"lstas_inv_lift1"
+"lstas_inv_lref1"
+"lstas_inv_lref1_aux"
+"lstas_inv_lref1_O"
+"lstas_inv_lref1_S"
+"lstas_inv_refl_pos"
+"lstas_inv_sort1"
+"lstas_inv_sort1_aux"
+"lstas_ldef"
+"lstas_lift"
+"lstas_llpx_sn_conf"
+"lstas_lstas"
+"lstas_mono"
+"lstas_scpds"
+"lstas_scpds_aux"
+"lstas_scpds_trans"
+"lstas_scpes_trans"
+"lstas_sort"
+"lstas_split"
+"lstas_split_aux"
+"lstas_succ"
+"lstas_trans"
+"lstas_zero"
+"lsuba"
+"lsuba_aaa_conf"
+"lsuba_aaa_trans"
+"lsuba_atom"
+"lsuba_beta"
+"lsuba_drop_O1_conf"
+"lsuba_drop_O1_trans"
+"lsuba_fwd_lsubr"
+"lsuba_inv_atom1"
+"lsuba_inv_atom1_aux"
+"lsuba_inv_atom2"
+"lsuba_inv_atom2_aux"
+"lsuba_inv_pair1"
+"lsuba_inv_pair1_aux"
+"lsuba_inv_pair2"
+"lsuba_inv_pair2_aux"
+"lsuba_lsubc"
+"lsuba_pair"
+"lsuba_refl"
+"lsuba_trans"
+"lsubc"
+"lsubc_atom"
+"lsubc_beta"
+"lsubc_drop_O1_trans"
+"lsubc_fwd_lsubr"
+"lsubc_inv_atom1"
+"lsubc_inv_atom1_aux"
+"lsubc_inv_atom2"
+"lsubc_inv_atom2_aux"
+"lsubc_inv_pair1"
+"lsubc_inv_pair1_aux"
+"lsubc_inv_pair2"
+"lsubc_inv_pair2_aux"
+"lsubc_pair"
+"lsubc_refl"
+"lsubd"
+"lsubd_atom"
+"lsubd_beta"
+"lsubd_da_conf"
+"lsubd_da_trans"
+"lsubd_drop_O1_conf"
+"lsubd_drop_O1_trans"
+"lsubd_fwd_lsubr"
+"lsubd_inv_atom1"
+"lsubd_inv_atom1_aux"
+"lsubd_inv_atom2"
+"lsubd_inv_atom2_aux"
+"lsubd_inv_pair1"
+"lsubd_inv_pair1_aux"
+"lsubd_inv_pair2"
+"lsubd_inv_pair2_aux"
+"lsubd_pair"
+"lsubd_refl"
+"lsubd_trans"
+"lsubr"
+"lsubr_atom"
+"lsubr_beta"
+"lsubr_cpcs_trans"
+"lsubr_cprs_trans"
+"lsubr_cpr_trans"
+"lsubr_cpxs_trans"
+"lsubr_cpx_trans"
+"lsubr_fwd_drop2_abbr"
+"lsubr_fwd_drop2_pair"
+"lsubr_fwd_length"
+"lsubr_inv_abbr2"
+"lsubr_inv_abbr2_aux"
+"lsubr_inv_abst1"
+"lsubr_inv_abst1_aux"
+"lsubr_inv_atom1"
+"lsubr_inv_atom1_aux"
+"lsubr_inv_pair1"
+"lsubr_inv_pair1_aux"
+"lsubr_pair"
+"lsubr_refl"
+"lsubr_trans"
+"lsubsv"
+"lsubsv_atom"
+"lsubsv_beta"
+"lsubsv_cpcs_trans"
+"lsubsv_cprs_trans"
+"lsubsv_drop_O1_conf"
+"lsubsv_drop_O1_trans"
+"lsubsv_fwd_lsuba"
+"lsubsv_fwd_lsubd"
+"lsubsv_fwd_lsubr"
+"lsubsv_inv_atom1"
+"lsubsv_inv_atom1_aux"
+"lsubsv_inv_atom2"
+"lsubsv_inv_atom2_aux"
+"lsubsv_inv_pair1"
+"lsubsv_inv_pair1_aux"
+"lsubsv_inv_pair2"
+"lsubsv_inv_pair2_aux"
+"lsubsv_lstas_trans"
+"lsubsv_pair"
+"lsubsv_refl"
+"lsubsv_scpds_trans"
+"lsubsv_snv_trans"
+"lsubsv_sta_trans"
+"lsuby"
+"lsuby_atom"
+"lsuby_cpysa_trans"
+"lsuby_cpys_trans"
+"lsuby_cpy_trans"
+"lsuby_drop_trans_be"
+"lsuby_fwd_length"
+"lsuby_inv_atom1"
+"lsuby_inv_atom1_aux"
+"lsuby_inv_pair1"
+"lsuby_inv_pair1_aux"
+"lsuby_inv_pair2"
+"lsuby_inv_pair2_aux"
+"lsuby_inv_succ1"
+"lsuby_inv_succ1_aux"
+"lsuby_inv_succ2"
+"lsuby_inv_succ2_aux"
+"lsuby_inv_zero1"
+"lsuby_inv_zero1_aux"
+"lsuby_inv_zero2"
+"lsuby_inv_zero2_aux"
+"lsuby_O2"
+"lsuby_pair"
+"lsuby_pair_lt"
+"lsuby_pair_O_Y"
+"lsuby_refl"
+"lsuby_succ"
+"lsuby_succ_lt"
+"lsuby_sym"
+"lsuby_trans"
+"lsuby_zero"
+"lsx"
+"lsxa"
+"lsxa_ind"
+"lsxa_intro"
+"lsxa_intro_aux"
+"lsxa_intro_lpx"
+"lsxa_inv_lsx"
+"lsxa_lleq_trans"
+"lsxa_lpxs_trans"
+"lsx_atom"
+"lsx_bind"
+"lsx_bind_lpxs_aux"
+"lsx_cpx_trans_lcosx"
+"lsx_cpx_trans_O"
+"lsx_flat"
+"lsx_flat_lpxs"
+"lsx_fwd_bind_dx"
+"lsx_fwd_bind_sn"
+"lsx_fwd_flat_dx"
+"lsx_fwd_flat_sn"
+"lsx_fwd_lref_be"
+"lsx_fwd_pair_sn"
+"lsx_ge"
+"lsx_ge_up"
+"lsx_gref"
+"lsx_ind"
+"lsx_ind_alt"
+"lsx_intro"
+"lsx_intro_alt"
+"lsx_inv_bind"
+"lsx_inv_flat"
+"lsx_inv_lift_be"
+"lsx_inv_lift_ge"
+"lsx_inv_lift_le"
+"lsx_lift_ge"
+"lsx_lift_le"
+"lsx_lleq_trans"
+"lsx_lpxs_trans"
+"lsx_lpx_trans"
+"lsx_lref_be"
+"lsx_lref_be_lpxs"
+"lsx_lref_free"
+"lsx_lref_skip"
+"lsx_lreq_conf"
+"lsx_lsxa"
+"lsx_sort"
+"ltail_length"
+"lw"
+"lw_pair"
+"minuss"
+"minuss_ge"
+"minuss_inv_cons1"
+"minuss_inv_cons1_aux"
+"minuss_inv_cons1_ge"
+"minuss_inv_cons1_lt"
+"minuss_inv_nil1"
+"minuss_inv_nil1_aux"
+"minuss_lt"
+"minuss_nil"
+"mk_gcp"
+"mk_gcr"
+"mk_sd"
+"mk_sh"
+"nexts_dec"
+"nexts_inj"
+"nexts_le"
+"nexts_lt"
+"nf"
+"nlift_bind_dx"
+"nlift_bind_sn"
+"nlift_flat_dx"
+"nlift_flat_sn"
+"nlift_inv_bind"
+"nlift_inv_flat"
+"nlift_inv_lref_be_SO"
+"nlift_lref_be_SO"
+"nlleq_inv_bind"
+"nlleq_inv_bind_O"
+"nlleq_inv_flat"
+"nlleq_lleq_div"
+"nllpx_sn_inv_bind"
+"nllpx_sn_inv_bind_O"
+"nllpx_sn_inv_flat"
+"Omega1"
+"Omega2"
+"pluss"
+"pluss_inv_cons2"
+"pluss_inv_nil2"
+"rfw"
+"rfw_lpair_dx"
+"rfw_lpair_sn"
+"rfw_shift"
+"rfw_tpair_dx"
+"rfw_tpair_sn"
+"ri2"
+"S1"
+"S2"
+"S3"
+"S4"
+"S5"
+"S6"
+"S7"
+"scpds"
+"scpds_aaa_conf"
+"scpds_conf_eq"
+"scpds_cpr_lpr_aux"
+"scpds_cprs_trans"
+"scpds_div"
+"scpds_fwd_cprs"
+"scpds_fwd_cpxs"
+"scpds_inv_abbr_abst"
+"scpds_inv_abst1"
+"scpds_inv_lift1"
+"scpds_inv_lstas_eq"
+"scpds_lift"
+"scpds_strap1"
+"scpds_strap2"
+"scpes"
+"scpes_aaa_mono"
+"scpes_canc_dx"
+"scpes_canc_sn"
+"scpes_cpr_lpr_aux"
+"scpes_inv_abst2"
+"scpes_inv_lstas_eq"
+"scpes_le_aux"
+"scpes_refl"
+"scpes_sym"
+"scpes_trans"
+"sd"
+"sd_d"
+"sd_d_correct"
+"sd_d_SS"
+"sd_O"
+"sd_SO"
+"sh"
+"sh_N"
+"shnv"
+"shnv_cast"
+"shnv_inv_cast"
+"shnv_inv_cast_aux"
+"shnv_inv_snv"
+"simple"
+"simple_atom"
+"simple_flat"
+"simple_inv_bind"
+"simple_inv_bind_aux"
+"simple_inv_pair"
+"simple_tsts_repl_dx"
+"simple_tsts_repl_sn"
+"snv"
+"snv_appl"
+"snv_bind"
+"snv_cast"
+"snv_cast_scpes"
+"snv_cpr_lpr"
+"snv_cpr_lpr_aux"
+"snv_cprs_lpr"
+"snv_cprs_lpr_aux"
+"snv_extended"
+"snv_fqu_conf"
+"snv_fqup_conf"
+"snv_fquq_conf"
+"snv_fqus_conf"
+"snv_fwd_aaa"
+"snv_fwd_da"
+"snv_fwd_fsb"
+"snv_fwd_lstas"
+"snv_inv_appl"
+"snv_inv_appl_aux"
+"snv_inv_bind"
+"snv_inv_bind_aux"
+"snv_inv_cast"
+"snv_inv_cast_aux"
+"snv_inv_gref"
+"snv_inv_gref_aux"
+"snv_inv_lift"
+"snv_inv_lref"
+"snv_inv_lref_aux"
+"snv_lift"
+"snv_lref"
+"snv_lstas"
+"snv_lstas_aux"
+"snv_preserve"
+"snv_restricted"
+"snv_shnv_cast"
+"snv_sort"
+"Sort"
+"sta_cprs_scpds"
+"sta_cpx"
+"sta_cpx_aux"
+"sta_fpb"
+"sta_fpbg"
+"sta_fpbq"
+"sta_fpbs"
+"sta_ldec"
+"TAtom"
+"TC_lpx_sn_fwd_length"
+"TC_lpx_sn_ind"
+"TC_lpx_sn_inv_atom1"
+"TC_lpx_sn_inv_atom2"
+"TC_lpx_sn_inv_lpx_sn_LTC"
+"TC_lpx_sn_inv_pair1"
+"TC_lpx_sn_inv_pair1_aux"
+"TC_lpx_sn_inv_pair2"
+"TC_lpx_sn_pair"
+"TC_lpx_sn_pair_refl"
+"term"
+"tir_atom"
+"tix_lref"
+"TPair"
+"tpr_cpr"
+"tprs_cprs"
+"trr_inv_atom"
+"trx_inv_atom"
+"tsts"
+"tsts_atom"
+"tsts_canc_dx"
+"tsts_canc_sn"
+"tsts_dec"
+"tsts_inv_atom1"
+"tsts_inv_atom1_aux"
+"tsts_inv_atom2"
+"tsts_inv_atom2_aux"
+"tsts_inv_bind_applv_simple"
+"tsts_inv_pair1"
+"tsts_inv_pair1_aux"
+"tsts_inv_pair2"
+"tsts_inv_pair2_aux"
+"tsts_pair"
+"tsts_refl"
+"tsts_sym"
+"tsts_trans"
+"tw"
+"tw_pos"
+"unfold"
+"unfold_bind"
+"unfold_flat"
+"unfold_lref"
+"unfold_sort"
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/Makefile b/matita/matita/contribs/lambdadelta/bin/roles/Makefile
new file mode 100644 (file)
index 0000000..779952b
--- /dev/null
@@ -0,0 +1,10 @@
+EXECS = roles
+
+REQUIRES =
+
+include ../Makefile.common
+
+test:
+#      @$(MAKE) --no-print-directory -C ../../ www
+
+.PHONY: test
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/roles.ml b/matita/matita/contribs/lambdadelta/bin/roles/roles.ml
new file mode 100644 (file)
index 0000000..1c7866e
--- /dev/null
@@ -0,0 +1,47 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+module EE = RolesEngine
+module EG = RolesGlobal
+module ET = RolesTypes
+module EU = RolesUtils
+
+let help_C = "<dir>  Set this working directory (default: current directory)"
+let help_L = " Debug osn lexer"
+let help_X = " Reset all options to defaults"
+let help_r = " Load current status"
+let help_s = "<version>  Start a stage with this version"
+let help_t = "<pointer>  Toggle the selection of this pointed entry"
+let help_w = " Save current status"
+let help   = "Usage: roles [ -LXrw | -C <dir> | -s <version> | -t <pointer> | <file> ]*"
+
+let new_stage s =
+  EE.new_stage (EU.version_of_string s)
+
+let toggle_entry s =
+  EE.toggle_entry (EU.pointer_of_string s)
+
+let process s =
+  match Filename.extension s with
+  | ".txt" -> EE.read_waiting s
+  | x      -> EU.raise_error (ET.EExt x)
+
+let _main = try
+  Arg.parse [
+    "-C", Arg.String ((:=) EG.wd), help_C;
+    "-L", Arg.Set EG.debug_lexer, help_L;
+    "-X", Arg.Unit EG.clear, help_X;
+    "-r", Arg.Unit EE.read_status, help_r;
+    "-s", Arg.String new_stage, help_s;
+    "-t", Arg.String toggle_entry, help_t;
+    "-w", Arg.Unit EE.write_status, help_w;
+  ] process help
+with ET.Error e -> Printf.eprintf "roles: %s\n%!" (EU.string_of_error e)
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/roles.mli b/matita/matita/contribs/lambdadelta/bin/roles/roles.mli
new file mode 100644 (file)
index 0000000..77f8969
--- /dev/null
@@ -0,0 +1,10 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesEngine.ml b/matita/matita/contribs/lambdadelta/bin/roles/rolesEngine.ml
new file mode 100644 (file)
index 0000000..564f64d
--- /dev/null
@@ -0,0 +1,68 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+module EG = RolesGlobal
+module EI = RolesInput
+module EO = RolesOutput
+module EU = RolesUtils
+module ET = RolesTypes
+
+let st = EU.new_status
+
+let new_stage v =
+  if st.ET.w = [] then st.ET.s <- v
+  else EU.raise_error ET.ENews
+
+let toggle_entry = function
+  | [0]       -> st.ET.r <- EU.list_toggle_all st.ET.r
+  | [0;m]     -> st.ET.r <- EU.list_toggle m st.ET.r
+  | [0;m;1]   ->
+    let r = EU.list_nth m st.ET.r in
+    r.ET.o <- EU.list_toggle_all r.ET.o
+  | [0;m;1;n] -> 
+    let r = EU.list_nth m st.ET.r in
+    r.ET.o <- EU.list_toggle n r.ET.o
+  | [0;m;2]   -> 
+    let r = EU.list_nth m st.ET.r in
+    r.ET.n <- EU.list_toggle_all r.ET.n
+  | [0;m;2;n] -> 
+    let r = EU.list_nth m st.ET.r in
+    r.ET.n <- EU.list_toggle n r.ET.n
+  | [1]        -> st.ET.t <- EU.list_toggle_all st.ET.t
+  | [1;m]      -> st.ET.t <- EU.list_toggle m st.ET.t
+  | [2]        -> st.ET.w <- EU.list_toggle_all st.ET.w
+  | [2;m]      -> st.ET.w <- EU.list_toggle m st.ET.w
+  | _          -> EU.raise_error ET.ENoEntry
+
+let read_waiting fname =
+  if st.ET.s = [] then EU.raise_error ET.ENoStage else
+  let ich = Scanf.Scanning.open_in fname in
+  let w = EI.read_names ich [] in
+  Scanf.Scanning.close_in ich;
+  let error n = ET.ENameClash n in
+  st.ET.w <- EU.list_union error EU.compare_names st.ET.w (List.rev w)
+
+let read_status () =
+  if st.ET.s <> [] then EU.raise_error (ET.EStage st.ET.s) else
+  let fname = Filename.concat !EG.wd "roles.osn" in
+  let ich = open_in fname in
+  let tmp = EI.read_status ich in
+  close_in ich;
+  st.ET.r <- tmp.ET.r;
+  st.ET.s <- tmp.ET.s;
+  st.ET.t <- tmp.ET.t;
+  st.ET.w <- tmp.ET.w
+
+let write_status () =
+  let fname = Filename.concat !EG.wd "roles.osn" in
+  let och = open_out fname in
+  EO.out_status och st;
+  close_out och
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesEngine.mli b/matita/matita/contribs/lambdadelta/bin/roles/rolesEngine.mli
new file mode 100644 (file)
index 0000000..6671513
--- /dev/null
@@ -0,0 +1,20 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+val new_stage: RolesTypes.version -> unit
+
+val toggle_entry: RolesTypes.pointer -> unit
+
+val read_waiting: string -> unit
+
+val read_status: unit -> unit
+
+val write_status: unit -> unit
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesGlobal.ml b/matita/matita/contribs/lambdadelta/bin/roles/rolesGlobal.ml
new file mode 100644 (file)
index 0000000..8a2679b
--- /dev/null
@@ -0,0 +1,22 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+let default_wd = ""
+
+let default_debug_lexer = false
+
+let wd = ref default_wd
+
+let debug_lexer = ref default_debug_lexer
+
+let clear () =
+  wd := default_wd;
+  debug_lexer := default_debug_lexer
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesGlobal.mli b/matita/matita/contribs/lambdadelta/bin/roles/rolesGlobal.mli
new file mode 100644 (file)
index 0000000..9567cda
--- /dev/null
@@ -0,0 +1,16 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+val wd: string ref
+
+val debug_lexer: bool ref 
+
+val clear: unit -> unit
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesInput.ml b/matita/matita/contribs/lambdadelta/bin/roles/rolesInput.ml
new file mode 100644 (file)
index 0000000..93e8018
--- /dev/null
@@ -0,0 +1,28 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+module EL = RolesLexer
+module EP = RolesParser
+module EU = RolesUtils
+
+let input_string_opt ich =
+  let map s = Some s in
+  try Scanf.bscanf ich " %S" map
+  with End_of_file -> None
+
+let rec read_names ich names =
+  match input_string_opt ich with
+  | None   -> names
+  | Some s -> read_names ich ((false,EU.name_of_string s)::names)
+
+let read_status ich =
+  let lexbuf = Lexing.from_channel ich in
+  EP.status EL.token lexbuf
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesInput.mli b/matita/matita/contribs/lambdadelta/bin/roles/rolesInput.mli
new file mode 100644 (file)
index 0000000..d075623
--- /dev/null
@@ -0,0 +1,14 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+val read_names: Scanf.Scanning.in_channel -> RolesTypes.names -> RolesTypes.names
+
+val read_status: in_channel -> RolesTypes.status
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesLexer.mll b/matita/matita/contribs/lambdadelta/bin/roles/rolesLexer.mll
new file mode 100644 (file)
index 0000000..372446f
--- /dev/null
@@ -0,0 +1,41 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+{
+  module EG = RolesGlobal
+  module EP = RolesParser
+
+  let out s = if !EG.debug_lexer then prerr_endline s
+}
+
+let SPC  = ['\r' '\n' '\t' ' ']+
+let QT   = "\""
+let TEXT = ['0'-'9' 'A'-'Z' 'a'-'z' '/' '.' '_']+
+
+rule token = parse
+  | SPC          { token lexbuf           }
+  | QT           { let s = text lexbuf in 
+                   out s; EP.TEXT s       }
+  | ":"          { out ":"; EP.SC         }
+  | "("          { out "("; EP.OP         }
+  | ")"          { out ")"; EP.CP         }
+  | "ver"   as s { out s; EP.VER          } 
+  | "old"   as s { out s; EP.OLD          }
+  | "new"   as s { out s; EP.NEW          }
+  | "rel"   as s { out s; EP.REL          }
+  | "base"  as s { out s; EP.BASE         }
+  | "top"   as s { out s; EP.TOP          }
+  | "roles" as s { out s; EP.ROLES        }
+  | eof          { EP.EOF                 }
+
+and text = parse
+   | QT          { ""                     }
+   | TEXT   as s { s ^ text lexbuf        }
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesOutput.ml b/matita/matita/contribs/lambdadelta/bin/roles/rolesOutput.ml
new file mode 100644 (file)
index 0000000..cbac04b
--- /dev/null
@@ -0,0 +1,56 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+module ET = RolesTypes
+module EU = RolesUtils
+
+let indent n =
+  String.make (2*n) ' '
+
+let out_tag i tag h map och l =
+  let aux och = List.iter (map (succ i) och) l in
+  if h then Printf.fprintf och "%s(%s%t)\n" (indent i) tag aux
+  else Printf.fprintf och "%s(%s\n%t%s)\n" (indent i) tag aux (indent i)
+
+let string_map f _i och x =
+  Printf.fprintf och " %S" (f x)
+
+let out_version i och v =
+  out_tag i "ver" true (string_map EU.string_of_version) och [v]
+
+let out_old i och os =
+  let map (_,o) = EU.string_of_obj o in
+  out_tag i "old" true (string_map map) och os
+
+let out_new i och ns =
+  let map (_,n) = EU.string_of_name n in
+  out_tag i "new" true (string_map map) och ns
+
+let out_role i och (_,r) =
+  let map i och r =
+    out_version i och r.ET.v;
+    out_old i och r.ET.o;
+    out_new i och r.ET.n
+  in
+  out_tag i "rel" false map och [r]
+
+let out_roles i och rs =
+  out_tag i "base" false out_role och rs
+
+let out_status och st =
+  let map i och st =
+    out_roles i och st.ET.r;
+    out_version i och st.ET.s;
+    out_old i och st.ET.t;
+    out_new i och st.ET.w
+  in
+  output_string och "roles:";
+  out_tag 0 "top" false map och [st]
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesOutput.mli b/matita/matita/contribs/lambdadelta/bin/roles/rolesOutput.mli
new file mode 100644 (file)
index 0000000..99b51f0
--- /dev/null
@@ -0,0 +1,12 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+val out_status: out_channel -> RolesTypes.status -> unit
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesParser.mly b/matita/matita/contribs/lambdadelta/bin/roles/rolesParser.mly
new file mode 100644 (file)
index 0000000..1c92ba9
--- /dev/null
@@ -0,0 +1,78 @@
+/*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ */
+
+%{
+  module EU = RolesUtils
+  module ET = RolesTypes
+%}
+
+%token EOF SC OP CP VER OLD NEW REL BASE TOP ROLES
+%token <string> TEXT
+
+%start status
+%type <RolesTypes.status> status
+
+%%
+
+version:
+  | TEXT { EU.version_of_string $1 }
+;
+
+obj:
+  | TEXT { false, EU.obj_of_string $1 }
+;
+
+name:
+  | TEXT { false, EU.name_of_string $1 }
+;
+
+role:
+  | OP REL ver olds news CP {
+      false, {ET.v = $3; ET.o = $4; ET.n = $5} 
+    }
+;
+
+objs:
+  |          { []       }
+  | obj objs { $1 :: $2 }
+;
+
+names:
+  |            { []       }
+  | name names { $1 :: $2 }
+;
+
+roles:
+  |            { []       }
+  | role roles { $1 :: $2 }
+;
+
+ver:
+  | OP VER version CP { $3 }
+;
+
+olds:
+  | OP OLD objs CP { $3 }
+;
+
+news:
+  | OP NEW names CP { $3 }
+;
+
+base:
+  | OP BASE roles CP { $3 }
+;
+
+status:
+  | ROLES SC OP TOP base ver olds news CP EOF {
+      {ET.r = $5; ET.s = $6; ET.t = $7; ET.w = $8} 
+    }
+;
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesTypes.ml b/matita/matita/contribs/lambdadelta/bin/roles/rolesTypes.ml
new file mode 100644 (file)
index 0000000..ad97fe7
--- /dev/null
@@ -0,0 +1,46 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+type version = int list
+
+type name = string list
+
+type names = (bool*name) list
+
+type obj = version * name
+
+type objs = (bool*obj) list
+
+type role = {
+  mutable v: version;
+  mutable o: objs;
+  mutable n: names;
+}
+
+type roles = (bool*role) list
+
+type status = {
+  mutable r: roles;
+  mutable s: version;
+  mutable t: objs;
+  mutable w: names;
+}
+
+type pointer = int list
+
+type error = EExt of string
+           | EStage of version
+           | ENoStage
+           | ENews
+           | ENameClash of name
+           | ENoEntry
+
+exception Error of error
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesUtils.ml b/matita/matita/contribs/lambdadelta/bin/roles/rolesUtils.ml
new file mode 100644 (file)
index 0000000..e1631c1
--- /dev/null
@@ -0,0 +1,95 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+module ET = RolesTypes
+
+let raise_error e =
+  raise (ET.Error e)
+
+let list_union error compare l1 l2 =
+  let rec aux l1 l2 = match l1 with 
+  | []       -> l2
+  | hd1::tl1 -> match l2 with
+  | []       -> l1
+  | hd2::tl2 ->
+    let b = compare (snd hd1) (snd hd2) in
+    if b > 0 then hd2 :: aux l1 tl2
+    else if b < 0 then hd1 :: aux tl1 l2 
+    else raise_error (error (snd hd1))
+  in
+  aux l1 l2
+
+let list_compare compare l1 l2 =
+  let rec aux l1 l2 = match l1 with 
+  | []       ->
+    if l2 = [] then 0 else -1
+  | hd1::tl1 -> match l2 with
+  | []       -> 1
+  | hd2::tl2 ->
+    let b = compare hd1 hd2 in
+    if b = 0 then aux tl1 tl2 else b
+  in
+  aux l1 l2
+
+let rec list_nth n = function
+  | []         -> raise_error ET.ENoEntry
+  | (_,hd)::tl -> if n = 0 then hd else list_nth (pred n) tl
+
+let rec list_toggle n = function
+  | []         -> raise_error ET.ENoEntry
+  | (b,hd)::tl -> if n = 0 then (not b,hd)::tl else (b,hd)::list_toggle (pred n) tl
+
+let rec list_toggle_all = function
+  | []         -> []
+  | (b,hd)::tl -> (not b,hd)::list_toggle_all tl
+
+let string_of_version v =
+  String.concat "." (List.map string_of_int v)
+
+let version_of_string s =
+  List.map int_of_string (String.split_on_char '.' s)
+
+let string_of_name n =
+  String.concat "_" n
+
+let name_of_string s =
+  String.split_on_char '_' s
+
+let compare_names n1 n2 =
+  list_compare compare n1 n2
+
+let string_of_obj (v,n) =
+  Printf.sprintf "%s/%s" (string_of_version v) (string_of_name n) 
+
+let obj_of_string s =
+  match String.split_on_char '/' s with
+  | [sv;sn] -> version_of_string sv, name_of_string sn 
+  | _       -> failwith "obj_of_string"
+
+let new_status = {
+  ET.r = []; ET.s = []; ET.t = []; ET.w = [];
+}
+
+let pointer_of_string = version_of_string
+
+let string_of_error = function
+  | ET.EExt x       ->
+    Printf.sprintf "unknown input file type %S" x
+  | ET.EStage v     ->
+    Printf.sprintf "current stage %S" (string_of_version v)
+  | ET.ENoStage     ->
+    Printf.sprintf "current stage not defined"
+  | ET.ENews        ->
+    Printf.sprintf "current stage not finished"
+  | ET.ENameClash n ->
+    Printf.sprintf "name clash %S" (string_of_name n)
+  | ET.ENoEntry     ->
+    Printf.sprintf "entry not found"
diff --git a/matita/matita/contribs/lambdadelta/bin/roles/rolesUtils.mli b/matita/matita/contribs/lambdadelta/bin/roles/rolesUtils.mli
new file mode 100644 (file)
index 0000000..c67e037
--- /dev/null
@@ -0,0 +1,41 @@
+(*
+    ||M||  This file is part of HELM, an Hypertextual, Electronic
+    ||A||  Library of Mathematics, developed at the Computer Science
+    ||T||  Department, University of Bologna, Italy.
+    ||I||
+    ||T||  HELM is free software; you can redistribute it and/or
+    ||A||  modify it under the terms of the GNU General Public License
+    \   /  version 2 or (at your option) any later version.
+     \ /   This software is distributed as is, NO WARRANTY.
+      V_______________________________________________________________ *)
+
+val raise_error: RolesTypes.error -> 'a
+
+val list_union: ('a -> RolesTypes.error) -> ('a -> 'a -> int) -> 
+                ('b*'a) list -> ('b*'a) list -> ('b*'a) list
+
+val list_nth: int -> ('a * 'b) list -> 'b
+
+val list_toggle: int -> (bool * 'b) list -> (bool * 'b) list
+
+val list_toggle_all: (bool * 'b) list -> (bool * 'b) list
+
+val string_of_version: RolesTypes.version -> string
+
+val version_of_string: string -> RolesTypes.version
+
+val string_of_name: RolesTypes.name -> string
+
+val name_of_string: string -> RolesTypes.name
+
+val compare_names: RolesTypes.name -> RolesTypes.name -> int
+
+val string_of_obj: RolesTypes.obj -> string
+
+val obj_of_string: string -> RolesTypes.obj
+
+val new_status: RolesTypes.status
+
+val pointer_of_string: string -> RolesTypes.pointer
+
+val string_of_error: RolesTypes.error -> string
index 6af48b1ca3b1964e59794a726afa98207fbb3dde..5785291157ce7d70fc6270dff0f85c41a65eefc7 100644 (file)
-aaa
-aaa_aaa_inv_appl
-aaa_aaa_inv_cast
-aaa_abbr
-aaa_abst
-aaa_appl
-aaa_cast
-aaa_dec
-aaa_feqx_conf
-aaa_fqu_conf
-aaa_fqup_conf
-aaa_fquq_conf
-aaa_fqus_conf
-aaa_inv_abbr
-aaa_inv_abbr_aux
-aaa_inv_abst
-aaa_inv_abst_aux
-aaa_inv_appl
-aaa_inv_appl_aux
-aaa_inv_cast
-aaa_inv_cast_aux
-aaa_inv_gref
-aaa_inv_gref_aux
-aaa_inv_lifts
-aaa_inv_lref
-aaa_inv_lref_aux
-aaa_inv_lref_drops
-aaa_inv_sort
-aaa_inv_sort_aux
-aaa_inv_zero
-aaa_inv_zero_aux
-aaa_lifts
-aaa_lref
-aaa_lref_drops
-aaa_mono
-aaa_pair_inv_lref
-aaa_sort
-aaa_teqx_conf_reqx
-aaa_zero
-aarity
-AAtom
-Abbr
-Abst
-abst_dec
-ac
-ac_eq
-ac_eq_props
-ac_le
-acle
-acle_eq_le
-acle_eq_monotonic_le
-acle_le_eq
-acle_le_monotonic_le
-acle_omega
-acle_one
-ac_le_props
-acle_refl
-acle_trans
-ac_props
-acr
-acr_aaa
-acr_aaa_csubc_lifts
-acr_abst
-acr_gcr
-acr_lifts
-ac_top
-ac_top_props
-APair
-append
-append_assoc
-append_atom
-append_atom_sn
-append_bind
-append_inj_dx
-append_inj_length_dx
-append_inj_length_sn
-append_inj_sn
-append_inv_atom3_sn
-append_inv_bind3_sn
-append_inv_pair_dx
-append_inv_refl_dx
-append_length
-append_shift
-Appl
-applv
-applv_cons
-applv_nil
-applv_simple
-apply_top
-bind
-bind1
-bind2
-Bind2
-BPair
-BUnit
-bw
-bw_pos
-candidate
-Cast
-cdeq
-cdeq_ext
-ceq
-ceq_ext
-ceq_ext_inv_eq
-ceq_ext_refl
-ceq_ext_trans
-ceq_inv_lift_sn
-ceq_lift_sn
-cext2
-cext2_co
-cext2_d_liftable2_sn
-cext2_sym
-cfull
-cfull_dec
-cfull_lift_sn
-cfun
-co_dedropable_sn
-co_dedropable_sn_CTC
-co_dedropable_sn_ltc
-co_dropable_dx
-co_dropable_dx_CTC
-co_dropable_dx_ltc
-co_dropable_sn
-co_dropable_sn_CTC
-co_dropable_sn_ltc
-CP0
-CP1
-CP2
-CP3
-d1_liftable_liftable_all
-d2_deliftable_sn_CTC
-d2_deliftable_sn_ltc
-d2_liftable_sn_CTC
-d2_liftable_sn_ltc
-d_appendable_sn
-d_deliftable1
-d_deliftable1_isuni
-d_deliftable2_bi
-d_deliftable2_sn
-d_deliftable2_sn_bi
-dedropable_sn
-dedropable_sn_CTC
-deg_inv_prec
-deg_inv_pred
-deg_iter
-deg_next_SO
-deg_O
-deg_SO
-deg_SO_gt
-deg_SO_inv_succ
-deg_SO_inv_succ_aux
-deg_SO_refl
-deg_SO_succ
-deg_SO_zero
-deliftable2_bi
-deliftable2_dx
-deliftable2_sn
-deliftable2_sn_bi
-deliftable2_sn_dx
-destruct_apair_apair_aux
-destruct_lbind_lbind_aux
-destruct_sort_sort_aux
-destruct_tatom_tatom_aux
-destruct_tpair_tpair_aux
-discr_apair_xy_x
-discr_apair_xy_y
-discr_lbind_x_xy
-discr_lbind_xy_x
-discr_tpair_xy_x
-discr_tpair_xy_y
-d_liftable1
-d_liftable1_all
-d_liftable1_isuni
-d_liftable2_bi
-d_liftable2_sn
-d_liftable2_sn_bi
-dropable_dx
-dropable_dx_CTC
-dropable_sn
-dropable_sn_CTC
-drops
-drops_after_fwd_drop2
-drops_atom
-drops_atom2_sex_conf
-drops_atom_F
-drops_bind2_fwd_rfw
-drops_conf
-drops_conf_div
-drops_conf_div_bind_isuni
-drops_conf_div_fcla
-drops_conf_div_isuni
-drops_conf_skip1
-drops_drop
-drops_eq_repl_back
-drops_eq_repl_fwd
-drops_F
-drops_fcla_fwd
-drops_fcla_fwd_le2
-drops_fcla_fwd_lt2
-drops_fcla_fwd_lt4
-drops_F_uni
-drops_fwd_drop2
-drops_fwd_drop2_aux
-drops_fwd_fcla
-drops_fwd_fcla_le2
-drops_fwd_fcla_lt2
-drops_fwd_isfin
-drops_fwd_isid
-drops_fwd_length_eq1
-drops_fwd_length_eq2
-drops_fwd_length_le4
-drops_fwd_lw
-drops_fwd_lw_lt
-drops_gen
-drops_inv_atom1
-drops_inv_atom1_aux
-drops_inv_atom2
-drops_inv_bind1_isuni
-drops_inv_bind2_isuni
-drops_inv_bind2_isuni_next
-drops_inv_drop1
-drops_inv_drop1_aux
-drops_inv_F
-drops_inv_gen
-drops_inv_isuni
-drops_inv_length_eq
-drops_inv_skip1
-drops_inv_skip1_aux
-drops_inv_skip2
-drops_inv_skip2_aux
-drops_inv_succ
-drops_inv_TF
-drops_inv_TF_aux
-drops_inv_uni
-drops_inv_x_bind_xy
-drops_isuni_ex
-drops_isuni_fwd_drop2
-drops_ldec_dec
-drops_lsubc_trans
-drops_mono
-drops_refl
-drops_seq_trans_next
-drops_sex_trans_next
-drops_sex_trans_push
-drops_skip
-drops_split_div
-drops_split_trans
-drops_split_trans_bind2
-drops_TF
-drops_tls_at
-drops_trans
-drops_trans_skip2
-eq_aarity_dec
-eq_bind1_dec
-eq_bind2_dec
-eq_bind_dec
-eq_false_inv_tpair_dx
-eq_false_inv_tpair_sn
-eq_flat2_dec
-eq_genv_dec
-eq_item0_dec
-eq_item2_dec
-eq_lenv_dec
-eq_term_dec
-ext2
-ext2_dec
-ext2_inv_pair
-ext2_inv_pair_dx
-ext2_inv_pair_dx_aux
-ext2_inv_pair_sn
-ext2_inv_pair_sn_aux
-ext2_inv_tc
-ext2_inv_unit
-ext2_inv_unit_dx
-ext2_inv_unit_dx_aux
-ext2_inv_unit_sn
-ext2_inv_unit_sn_aux
-ext2_pair
-ext2_refl
-ext2_sym
-ext2_tc
-ext2_tc_inj
-ext2_tc_pair
-ext2_tc_step
-ext2_trans
-ext2_unit
-f_dedropable_sn
-f_dropable_dx
-f_dropable_sn
-feqx
-feqx_canc_dx
-feqx_canc_sn
-feqx_fqus_trans
-feqx_intro_dx
-feqx_intro_sn
-feqx_inv_gen_dx
-feqx_inv_gen_sn
-feqx_refl
-feqx_sym
-feqx_tneqx_repl_dx
-feqx_trans
-flat2
-Flat2
-fold
-fold_atom
-fold_pair
-fold_unit
-fqu
-fqu_bind_dx
-fqu_clear
-fqu_drop
-fqu_flat_dx
-fqu_fqup
-fqu_fquq
-fqu_fwd_fw
-fqu_fwd_length_lref1
-fqu_fwd_length_lref1_aux
-fqu_gref
-fqu_inv_atom1
-fqu_inv_bind1
-fqu_inv_bind1_aux
-fqu_inv_bind1_true
-fqu_inv_flat1
-fqu_inv_flat1_aux
-fqu_inv_gref1
-fqu_inv_gref1_aux
-fqu_inv_gref1_bind
-fqu_inv_lref1
-fqu_inv_lref1_aux
-fqu_inv_lref1_bind
-fqu_inv_sort1
-fqu_inv_sort1_aux
-fqu_inv_sort1_bind
-fqu_inv_teqx
-fqu_inv_teqx_aux
-fqu_inv_zero1_pair
-fqu_lref_O
-fqu_lref_S
-fqup
-fqu_pair_sn
-fqup_bind_dx
-fqup_bind_dx_flat_dx
-fqup_clear
-fqup_drops_strap1
-fqup_drops_succ
-fqup_flat_dx
-fqup_flat_dx_bind_dx
-fqup_flat_dx_pair_sn
-fqup_fqus
-fqup_fqus_trans
-fqup_fwd_fw
-fqup_ind
-fqup_ind_dx
-fqup_inv_step_sn
-fqup_lref
-fqup_pair_sn
-fqup_strap1
-fqup_strap2
-fqup_trans
-fqup_wf_ind
-fqup_wf_ind_eq
-fqup_zeta
-fquq
-fquq_fqus
-fquq_fwd_fw
-fquq_fwd_length_lref1
-fquq_refl
-fqus
-fqus_drops
-fqus_fqup_trans
-fqus_fwd_fw
-fqus_ind
-fqus_ind_dx
-fqus_inv_atom1
-fqus_inv_bind1
-fqus_inv_bind1_true
-fqus_inv_flat1
-fqus_inv_fqup
-fqus_inv_fqu_sn
-fqus_inv_gref1
-fqus_inv_gref1_bind
-fqus_inv_lref1
-fqus_inv_lref1_bind
-fqus_inv_refl_atom3
-fqus_inv_sort1
-fqus_inv_sort1_bind
-fqus_inv_zero1_pair
-fqu_sort
-fqus_refl
-fqus_strap1
-fqus_strap1_fqu
-fqus_strap2
-fqus_strap2_fqu
-fqus_trans
-fqu_teqx_conf
-fqu_wf_ind
-frees
-frees_append_void
-frees_atom
-frees_atom_drops
-frees_bind
-frees_bind_void
-frees_eq_repl_back
-frees_eq_repl_fwd
-frees_flat
-frees_fwd_coafter
-frees_fwd_isfin
-frees_gref
-frees_ind_void
-frees_inv_append_void
-frees_inv_append_void_aux
-frees_inv_atom
-frees_inv_atom_aux
-frees_inv_bind
-frees_inv_bind_aux
-frees_inv_bind_void
-frees_inv_drops_next
-frees_inv_flat
-frees_inv_flat_aux
-frees_inv_gref
-frees_inv_gref_aux
-frees_inv_lifts
-frees_inv_lifts_ex
-frees_inv_lifts_SO
-frees_inv_lref
-frees_inv_lref_aux
-frees_inv_lref_drops
-frees_inv_pair
-frees_inv_pair_aux
-frees_inv_sort
-frees_inv_sort_aux
-frees_inv_unit
-frees_inv_unit_aux
-frees_lifts
-frees_lifts_SO
-frees_lref
-frees_lref_push
-frees_lref_pushs
-frees_mono
-frees_pair
-frees_pair_drops
-frees_req_conf
-frees_reqx_conf
-frees_sex_conf
-frees_sort
-frees_teqx_conf
-frees_teqx_conf_reqx
-frees_total
-frees_unit
-frees_unit_drops
-fsge_rex_trans
-fsle
-fsle_bind
-fsle_bind_dx_dx
-fsle_bind_dx_sn
-fsle_bind_eq
-fsle_bind_sn_ge
-fsle_flat
-fsle_flat_dx_dx
-fsle_flat_dx_sn
-fsle_flat_sn
-fsle_frees_trans
-fsle_frees_trans_eq
-fsle_fwd_pair_sn
-fsle_gref
-fsle_gref_bi
-fsle_inv_frees_eq
-fsle_inv_lifts_sn
-fsle_lifts_dx
-fsle_lifts_sn
-fsle_lifts_SO
-fsle_lifts_SO_sn
-fsle_pair_bi
-fsle_refl
-fsle_shift
-fsle_sort
-fsle_sort_bi
-fsle_trans_dx
-fsle_trans_rc
-fsle_trans_sn
-fsle_unit_bi
-f_transitive_next
-fw
-fw_clear
-fw_lpair_sn
-fw_shift
-fw_tpair_dx
-fw_tpair_sn
-GAtom
-gcp
-gcp2_all
-gcr
-gcr_aaa
-genv
-glength
-GPair
-GRef
-gw
-gw_pair
-is_apear_dec
-is_lifts_dec
-item0
-item2
-LAtom
-LBind
-length
-length_atom
-length_bind
-length_inv_succ_dx
-length_inv_succ_dx_ltail
-length_inv_succ_sn
-length_inv_succ_sn_ltail
-length_inv_zero_dx
-length_inv_zero_sn
-lenv
-lenv_case_tail
-lenv_ind_tail
-lex
-lex_atom
-lex_bind
-lex_bind_refl_dx
-lex_co
-lex_conf
-lex_confluent
-lex_CTC
-lex_CTC_ind_dx
-lex_CTC_ind_sn
-lex_CTC_inj
-lex_CTC_step_dx
-lex_CTC_step_sn
-lex_dropable_dx
-lex_dropable_sn
-lex_drops_conf_pair
-lex_drops_trans_pair
-lex_fwd_length
-lex_ind
-lex_inv_atom_dx
-lex_inv_atom_sn
-lex_inv_bind_dx
-lex_inv_bind_sn
-lex_inv_CTC
-lex_inv_pair
-lex_inv_pair_dx
-lex_inv_pair_sn
-lex_inv_unit_dx
-lex_inv_unit_sn
-lex_liftable_dedropable_sn
-lex_pair
-lex_refl
-lex_trans
-lex_transitive
-lex_unit
-liftable2_bi
-liftable2_dx
-liftable2_sn
-liftable2_sn_bi
-liftable2_sn_dx
-lifts
-lifts_applv
-liftsb
-liftsb_conf
-liftsb_div3
-liftsb_eq_repl_back
-liftsb_fwd_bw
-liftsb_fwd_isid
-lifts_bind
-liftsb_inj
-liftsb_inv_pair_dx
-liftsb_inv_pair_sn
-liftsb_inv_unit_dx
-liftsb_inv_unit_sn
-liftsb_mono
-liftsb_refl
-liftsb_split_trans
-liftsb_total
-liftsb_trans
-lifts_conf
-lifts_div3
-lifts_div4
-lifts_div4_one
-lifts_eq_repl_back
-lifts_eq_repl_fwd
-lifts_flat
-lifts_fwd_isid
-lifts_fwd_pair1
-lifts_fwd_pair2
-lifts_fwd_tw
-lifts_gref
-lifts_inj
-lifts_inv_applv1
-lifts_inv_applv2
-lifts_inv_atom1
-lifts_inv_atom2
-lifts_inv_bind1
-lifts_inv_bind1_aux
-lifts_inv_bind2
-lifts_inv_bind2_aux
-lifts_inv_flat1
-lifts_inv_flat1_aux
-lifts_inv_flat2
-lifts_inv_flat2_aux
-lifts_inv_gref1
-lifts_inv_gref1_aux
-lifts_inv_gref2
-lifts_inv_gref2_aux
-lifts_inv_lref1
-lifts_inv_lref1_aux
-lifts_inv_lref1_uni
-lifts_inv_lref2
-lifts_inv_lref2_aux
-lifts_inv_lref2_uni
-lifts_inv_lref2_uni_ge
-lifts_inv_lref2_uni_lt
-lifts_inv_pair_xy_x
-lifts_inv_pair_xy_y
-lifts_inv_push_succ_sn
-lifts_inv_push_zero_sn
-lifts_inv_sort1
-lifts_inv_sort1_aux
-lifts_inv_sort2
-lifts_inv_sort2_aux
-lifts_lref
-lifts_lref_ge
-lifts_lref_ge_minus
-lifts_lref_lt
-lifts_lref_uni
-lifts_mono
-lifts_push_lref
-lifts_push_zero
-lifts_refl
-lifts_simple_dx
-lifts_simple_sn
-lifts_sort
-lifts_split_div
-lifts_split_trans
-lifts_total
-lifts_trans
-lifts_trans4_one
-lifts_trans_uni
-lifts_uni
-liftsv
-liftsv_cons
-liftsv_inj
-liftsv_inv_cons1
-liftsv_inv_cons1_aux
-liftsv_inv_cons2
-liftsv_inv_cons2_aux
-liftsv_inv_nil1
-liftsv_inv_nil1_aux
-liftsv_inv_nil2
-liftsv_inv_nil2_aux
-liftsv_mono
-liftsv_nil
-liftsv_split_trans
-liftsv_total
-liftsv_trans
-LRef
-lsuba
-lsuba_aaa_conf
-lsuba_aaa_trans
-lsuba_atom
-lsuba_beta
-lsuba_bind
-lsuba_drops_conf_isuni
-lsuba_drops_trans_isuni
-lsuba_fwd_lsubr
-lsuba_inv_atom1
-lsuba_inv_atom1_aux
-lsuba_inv_atom2
-lsuba_inv_atom2_aux
-lsuba_inv_bind1
-lsuba_inv_bind1_aux
-lsuba_inv_bind2
-lsuba_inv_bind2_aux
-lsuba_lsubc
-lsuba_refl
-lsuba_trans
-lsubc
-lsubc_atom
-lsubc_beta
-lsubc_bind
-lsubc_drops_trans_isuni
-lsubc_fwd_lsubr
-lsubc_inv_atom1
-lsubc_inv_atom1_aux
-lsubc_inv_atom2
-lsubc_inv_atom2_aux
-lsubc_inv_bind1
-lsubc_inv_bind1_aux
-lsubc_inv_bind2
-lsubc_inv_bind2_aux
-lsubc_refl
-lsubf
-lsubf_atom
-lsubf_beta
-lsubf_beta_tl_dx
-lsubf_bind
-lsubf_bind_tl_dx
-lsubf_eq_repl_back1
-lsubf_eq_repl_back2
-lsubf_eq_repl_fwd1
-lsubf_eq_repl_fwd2
-lsubf_frees_trans
-lsubf_fwd_bind_tl
-lsubf_fwd_isid_dx
-lsubf_fwd_isid_sn
-lsubf_fwd_lsubr_isdiv
-lsubf_fwd_sle
-lsubf_inv_atom
-lsubf_inv_atom1
-lsubf_inv_atom1_aux
-lsubf_inv_atom2
-lsubf_inv_atom2_aux
-lsubf_inv_beta_sn
-lsubf_inv_bind_sn
-lsubf_inv_pair1
-lsubf_inv_pair1_aux
-lsubf_inv_pair2
-lsubf_inv_pair2_aux
-lsubf_inv_push1
-lsubf_inv_push1_aux
-lsubf_inv_push2
-lsubf_inv_push2_aux
-lsubf_inv_push_sn
-lsubf_inv_refl
-lsubf_inv_sor_dx
-lsubf_inv_unit1
-lsubf_inv_unit1_aux
-lsubf_inv_unit2
-lsubf_inv_unit2_aux
-lsubf_inv_unit_sn
-lsubf_push
-lsubf_refl
-lsubf_refl_eq
-lsubf_sor
-lsubf_unit
-lsubr
-lsubr_atom
-lsubr_beta
-lsubr_bind
-lsubr_fwd_bind1
-lsubr_fwd_bind2
-lsubr_fwd_drops2_abbr
-lsubr_fwd_drops2_bind
-lsubr_fwd_length
-lsubr_inv_abbr2
-lsubr_inv_abst1
-lsubr_inv_abst2
-lsubr_inv_atom1
-lsubr_inv_atom1_aux
-lsubr_inv_atom2
-lsubr_inv_atom2_aux
-lsubr_inv_bind1
-lsubr_inv_bind1_aux
-lsubr_inv_bind2
-lsubr_inv_bind2_aux
-lsubr_inv_pair2
-lsubr_inv_unit1
-lsubr_inv_unit2
-lsubr_lsubf
-lsubr_lsubf_isid
-lsubr_refl
-lsubr_trans
-lsubr_unit
-ltail_length
-lveq
-lveq_atom
-lveq_bind
-lveq_fwd_abst_bind_length_le
-lveq_fwd_bind_abst_length_le
-lveq_fwd_gen
-lveq_fwd_length
-lveq_fwd_length_eq
-lveq_fwd_length_le_dx
-lveq_fwd_length_le_sn
-lveq_fwd_length_minus
-lveq_fwd_length_plus
-lveq_fwd_pair_dx
-lveq_fwd_pair_sn
-lveq_inj
-lveq_inj_length
-lveq_inj_void_dx_le
-lveq_inj_void_sn_ge
-lveq_inv_atom_atom
-lveq_inv_atom_bind
-lveq_inv_bind
-lveq_inv_bind_atom
-lveq_inv_bind_O
-lveq_inv_pair_pair
-lveq_inv_succ
-lveq_inv_succ_aux
-lveq_inv_succ_dx
-lveq_inv_succ_sn
-lveq_inv_succ_sn_aux
-lveq_inv_void_dx_length
-lveq_inv_void_sn_length
-lveq_inv_void_succ_dx
-lveq_inv_void_succ_sn
-lveq_inv_zero
-lveq_inv_zero_aux
-lveq_length_eq
-lveq_length_fwd_dx
-lveq_length_fwd_sn
-lveq_refl
-lveq_sym
-lveq_void_dx
-lveq_void_sn
-lw
-lw_bind
-mk_ac
-mk_ac_props
-mk_gcp
-mk_gcr
-mk_sd
-mk_sd_props
-mk_sh
-mk_sh_acyclic
-mk_sh_decidable
-mk_sh_lt
-nexts_le
-nexts_lt
-nf
-R_confluent2_rex
-req
-req_feqx_trans
-req_fsle_comp
-req_fwd_rex
-req_inv_bind
-req_inv_flat
-req_inv_lifts_bi
-req_inv_lref_bind_dx
-req_inv_lref_bind_sn
-req_inv_zero_pair_dx
-req_inv_zero_pair_sn
-req_refl
-req_reqx
-req_reqx_trans
-req_rex_trans
-req_transitive
-reqx
-reqx_atom
-reqx_bind
-reqx_bind_repl_dx
-reqx_bind_void
-reqx_canc_dx
-reqx_canc_sn
-reqx_dec
-reqx_flat
-reqx_fqup_trans
-reqx_fquq_trans
-reqx_fqus_trans
-reqx_fqu_trans
-reqx_fsge_comp
-reqx_fwd_bind_dx
-reqx_fwd_bind_dx_void
-reqx_fwd_dx
-reqx_fwd_flat_dx
-reqx_fwd_length
-reqx_fwd_pair_sn
-reqx_fwd_zero_pair
-reqx_gref
-reqx_gref_length
-reqx_inv_atom_dx
-reqx_inv_atom_sn
-reqx_inv_bind
-reqx_inv_bind_void
-reqx_inv_flat
-reqx_inv_lifts_bi
-reqx_inv_lifts_dx
-reqx_inv_lifts_sn
-reqx_inv_lref
-reqx_inv_lref_bind_dx
-reqx_inv_lref_bind_sn
-reqx_inv_lref_pair_bi
-reqx_inv_lref_pair_dx
-reqx_inv_lref_pair_sn
-reqx_inv_zero
-reqx_inv_zero_pair_dx
-reqx_inv_zero_pair_sn
-reqx_lifts_bi
-reqx_lifts_sn
-reqx_lref
-reqx_pair
-reqx_pair_refl
-reqx_refl
-reqx_repl
-reqx_rneqx_trans
-reqx_sort
-reqx_sort_length
-reqx_sym
-reqx_trans
-reqx_unit
-reqx_unit_length
-rex
-rex_atom
-rex_bind
-rex_bind_dx_split
-rex_bind_dx_split_void
-rex_bind_repl_dx
-rex_bind_void
-rex_co
-rex_conf
-rex_confluent
-rex_dec
-rex_dropable_dx
-rex_dropable_sn
-rex_flat
-rex_flat_dx_split
-rex_fsge_compatible
-rex_fsle_compatible
-rex_fwd_bind_dx
-rex_fwd_bind_dx_void
-rex_fwd_dx
-rex_fwd_flat_dx
-rex_fwd_length
-rex_fwd_pair_sn
-rex_fwd_zero_pair
-rex_gref
-rex_gref_length
-rex_inv_atom_dx
-rex_inv_atom_sn
-rex_inv_bind
-rex_inv_bind_void
-rex_inv_flat
-rex_inv_frees
-rex_inv_gref
-rex_inv_gref_bind_dx
-rex_inv_gref_bind_sn
-rex_inv_lex_req
-rex_inv_lifts_bi
-rex_inv_lref
-rex_inv_lref_bind_dx
-rex_inv_lref_bind_sn
-rex_inv_lref_pair_bi
-rex_inv_lref_pair_dx
-rex_inv_lref_pair_sn
-rex_inv_lref_unit_dx
-rex_inv_lref_unit_sn
-rex_inv_sort
-rex_inv_sort_bind_dx
-rex_inv_sort_bind_sn
-rex_inv_zero
-rex_inv_zero_length
-rex_inv_zero_pair_dx
-rex_inv_zero_pair_sn
-rex_inv_zero_unit_dx
-rex_inv_zero_unit_sn
-rex_isid
-rex_lex
-rex_liftable_dedropable_sn
-rex_lifts_bi
-rex_lref
-rex_pair
-rex_pair_refl
-rex_pair_sn_split
-rex_refl
-rexs
-rexs_atom
-rexs_co
-rexs_fwd_bind_dx
-rexs_fwd_bind_dx_void
-rexs_fwd_flat_dx
-rexs_fwd_length
-rexs_fwd_pair_sn
-rexs_gref
-rexs_ind_dx
-rexs_ind_sn
-rexs_inv_atom_dx
-rexs_inv_atom_sn
-rexs_inv_bind
-rexs_inv_bind_void
-rexs_inv_flat
-rexs_inv_gref
-rexs_inv_gref_bind_dx
-rexs_inv_gref_bind_sn
-rexs_inv_lex_req
-rexs_inv_sort
-rexs_inv_sort_bind_dx
-rexs_inv_sort_bind_sn
-rexs_lex
-rexs_lex_req
-rexs_lref
-rex_sort
-rex_sort_length
-rexs_pair
-rexs_pair_refl
-rexs_refl
-rexs_sort
-rexs_step_dx
-rexs_step_sn
-rexs_sym
-rexs_tc
-rexs_trans
-rexs_unit
-rex_sym
-rex_trans_fsle
-rex_transitive
-rex_trans_next
-rex_unit
-rex_unit_length
-rex_unit_sn
-R_fsge_compatible
-rfw
-rfw_clear
-rfw_lpair_dx
-rfw_lpair_sn
-rfw_shift
-rfw_tpair_dx
-rfw_tpair_sn
-rneqx_inv_bind
-rneqx_inv_bind_void
-rneqx_inv_flat
-rneqx_reqx_canc_dx
-rneqx_reqx_div
-rnex_inv_bind
-rnex_inv_bind_void
-rnex_inv_flat
-R_pw_confluent2_sex
-S1
-S2
-S3
-S5
-S6
-S7
-sd
-sd_d
-sd_d_correct
-sd_d_props
-sd_d_SS
-sd_O
-sd_O_props
-sd_props
-sd_SO
-sd_SO_props
-seq
-seq_canc_dx
-seq_canc_sn
-seq_co_dedropable_sn
-seq_co_dropable_dx
-seq_co_dropable_sn
-seq_drops_conf_next
-seq_drops_trans_next
-seq_eq_repl_back
-seq_eq_repl_fwd
-seq_fwd_length
-seq_inv_atom1
-seq_inv_atom2
-seq_inv_next
-seq_inv_next1
-seq_inv_next2
-seq_inv_push
-seq_inv_push1
-seq_inv_push2
-seq_inv_tl
-seq_join
-seq_meet
-seq_refl
-seq_sym
-seq_trans
-sex
-sex_atom
-sex_canc_dx
-sex_canc_sn
-sex_co
-sex_co_dropable_dx
-sex_co_dropable_sn
-sex_co_isid
-sex_conf
-sex_dec
-sex_dropable_dx_aux
-sex_drops_conf_next
-sex_drops_conf_push
-sex_drops_trans_next
-sex_drops_trans_push
-sex_eq_repl_back
-sex_eq_repl_fwd
-sex_fwd_bind
-sex_fwd_length
-sex_inv_atom1
-sex_inv_atom1_aux
-sex_inv_atom2
-sex_inv_atom2_aux
-sex_inv_next
-sex_inv_next1
-sex_inv_next1_aux
-sex_inv_next2
-sex_inv_next2_aux
-sex_inv_push
-sex_inv_push1
-sex_inv_push1_aux
-sex_inv_push2
-sex_inv_push2_aux
-sex_inv_tc_dx
-sex_inv_tc_sn
-sex_inv_tl
-sex_join
-sex_length_cfull
-sex_length_isid
-sex_liftable_co_dedropable_bi
-sex_liftable_co_dedropable_sn
-sex_meet
-sex_next
-sex_pair_repl
-sex_push
-sex_refl
-sex_sdj
-sex_sdj_split
-sex_sle_split
-sex_sym
-sex_tc_dx
-sex_tc_inj_dx
-sex_tc_inj_sn
-sex_tc_next
-sex_tc_next_dx
-sex_tc_next_sn
-sex_tc_push
-sex_tc_push_dx
-sex_tc_push_sn
-sex_tc_refl
-sex_tc_step_dx
-sex_trans
-sex_trans_gen
-sex_trans_id_cfull
-sex_transitive
-sh
-sh_acyclic
-sh_decidable
-sh_lt
-sh_lt_acyclic
-sh_lt_dec
-sh_lt_nexts_inv_lt
-simple
-simple_atom
-simple_dec_ex
-simple_flat
-simple_inv_bind
-simple_inv_bind_aux
-simple_inv_pair
-simple_teqo_repl_dx
-simple_teqo_repl_sn
-sle_seq_trans
-sle_sex_conf
-sle_sex_trans
-Sort
-s_rs_transitive_isid
-s_rs_transitive_lex_inv_isid
-TAtom
-tc_f_dedropable_sn
-tc_f_dropable_dx
-tc_f_dropable_sn
-teqo
-teqo_canc_dx
-teqo_canc_sn
-teqo_dec
-teqo_gref
-teqo_inv_applv_bind_simple
-teqo_inv_gref1
-teqo_inv_gref1_aux
-teqo_inv_lifts_bi
-teqo_inv_lref1
-teqo_inv_lref1_aux
-teqo_inv_pair
-teqo_inv_pair1
-teqo_inv_pair1_aux
-teqo_inv_pair2
-teqo_inv_pair2_aux
-teqo_inv_sort1
-teqo_inv_sort1_aux
-teqo_lifts_bi
-teqo_lifts_dx
-teqo_lifts_sn
-teqo_lref
-teqo_pair
-teqo_refl
-teqo_sort
-teqo_sym
-teqo_trans
-teqx
-teqx_canc_dx
-teqx_canc_sn
-teqx_dec
-teqx_ext
-teqx_feqx
-teqx_fqup_trans
-teqx_fquq_trans
-teqx_fqus_trans
-teqx_fqu_trans
-teqx_fwd_atom1
-teqx_gref
-teqx_inv_gref1
-teqx_inv_gref1_aux
-teqx_inv_lifts_bi
-teqx_inv_lifts_dx
-teqx_inv_lifts_sn
-teqx_inv_lref1
-teqx_inv_lref1_aux
-teqx_inv_pair
-teqx_inv_pair1
-teqx_inv_pair1_aux
-teqx_inv_pair2
-teqx_inv_pair_xy_x
-teqx_inv_pair_xy_y
-teqx_inv_sort1
-teqx_inv_sort1_aux
-teqx_inv_sort2
-teqx_lifts_bi
-teqx_lifts_dx
-teqx_lifts_inv_pair_sn
-teqx_lifts_sn
-teqx_lref
-teqx_pair
-teqx_refl
-teqx_repl
-teqx_reqx_conf
-teqx_reqx_div
-teqx_rex_conf
-teqx_rex_div
-teqx_sort
-teqx_sym
-teqx_teqo
-teqx_tneqx_trans
-teqx_trans
-teqx_tweq
-term
-tneqx_inv_pair
-tneqx_teqx_canc_dx
-TPair
-tw
-tweq
-tweq_abbr
-tweq_abbr_neg
-tweq_abbr_pos
-tweq_abst
-tweq_appl
-tweq_canc_dx
-tweq_canc_sn
-tweq_cast
-tweq_dec
-tweq_fwd_pair_bi
-tweq_fwd_pair_sn
-tweq_gref
-tweq_inv_abbr_neg_sn
-tweq_inv_abbr_pos_bi
-tweq_inv_abbr_pos_sn
-tweq_inv_abbr_pos_x_lifts_y_y
-tweq_inv_abbr_sn
-tweq_inv_abbr_sn_aux
-tweq_inv_abst_sn
-tweq_inv_abst_sn_aux
-tweq_inv_appl_bi
-tweq_inv_appl_sn
-tweq_inv_appl_sn_aux
-tweq_inv_cast_bi
-tweq_inv_cast_sn
-tweq_inv_cast_sn_aux
-tweq_inv_cast_xy_y
-tweq_inv_gref_sn
-tweq_inv_gref_sn_aux
-tweq_inv_lifts_bi
-tweq_inv_lref_sn
-tweq_inv_lref_sn_aux
-tweq_inv_sort_sn
-tweq_inv_sort_sn_aux
-tweq_lifts_bi
-tweq_lifts_dx
-tweq_lifts_sn
-tweq_lref
-tweq_refl
-tweq_repl
-tweq_simple_trans
-tweq_sort
-tweq_sym
-tweq_trans
-tw_le_pair_dx
-tw_pos
-Void
+"aaa"
+"aaa_aaa_inv_appl"
+"aaa_aaa_inv_cast"
+"aaa_abbr"
+"aaa_abst"
+"aaa_appl"
+"aaa_cast"
+"aaa_dec"
+"aaa_feqx_conf"
+"aaa_fqu_conf"
+"aaa_fqup_conf"
+"aaa_fquq_conf"
+"aaa_fqus_conf"
+"aaa_inv_abbr"
+"aaa_inv_abbr_aux"
+"aaa_inv_abst"
+"aaa_inv_abst_aux"
+"aaa_inv_appl"
+"aaa_inv_appl_aux"
+"aaa_inv_cast"
+"aaa_inv_cast_aux"
+"aaa_inv_gref"
+"aaa_inv_gref_aux"
+"aaa_inv_lifts"
+"aaa_inv_lref"
+"aaa_inv_lref_aux"
+"aaa_inv_lref_drops"
+"aaa_inv_sort"
+"aaa_inv_sort_aux"
+"aaa_inv_zero"
+"aaa_inv_zero_aux"
+"aaa_lifts"
+"aaa_lref"
+"aaa_lref_drops"
+"aaa_mono"
+"aaa_pair_inv_lref"
+"aaa_sort"
+"aaa_teqx_conf_reqx"
+"aaa_zero"
+"aarity"
+"AAtom"
+"Abbr"
+"Abst"
+"abst_dec"
+"ac"
+"ac_eq"
+"ac_eq_props"
+"ac_le"
+"acle"
+"acle_eq_le"
+"acle_eq_monotonic_le"
+"acle_le_eq"
+"acle_le_monotonic_le"
+"acle_omega"
+"acle_one"
+"ac_le_props"
+"acle_refl"
+"acle_trans"
+"ac_props"
+"acr"
+"acr_aaa"
+"acr_aaa_csubc_lifts"
+"acr_abst"
+"acr_gcr"
+"acr_lifts"
+"ac_top"
+"ac_top_props"
+"APair"
+"append"
+"append_assoc"
+"append_atom"
+"append_atom_sn"
+"append_bind"
+"append_inj_dx"
+"append_inj_length_dx"
+"append_inj_length_sn"
+"append_inj_sn"
+"append_inv_atom3_sn"
+"append_inv_bind3_sn"
+"append_inv_pair_dx"
+"append_inv_refl_dx"
+"append_length"
+"append_shift"
+"Appl"
+"applv"
+"applv_cons"
+"applv_nil"
+"applv_simple"
+"apply_top"
+"bind"
+"bind1"
+"bind2"
+"Bind2"
+"BPair"
+"BUnit"
+"bw"
+"bw_pos"
+"candidate"
+"Cast"
+"cdeq"
+"cdeq_ext"
+"ceq"
+"ceq_ext"
+"ceq_ext_inv_eq"
+"ceq_ext_refl"
+"ceq_ext_trans"
+"ceq_inv_lift_sn"
+"ceq_lift_sn"
+"cext2"
+"cext2_co"
+"cext2_d_liftable2_sn"
+"cext2_sym"
+"cfull"
+"cfull_dec"
+"cfull_lift_sn"
+"cfun"
+"co_dedropable_sn"
+"co_dedropable_sn_CTC"
+"co_dedropable_sn_ltc"
+"co_dropable_dx"
+"co_dropable_dx_CTC"
+"co_dropable_dx_ltc"
+"co_dropable_sn"
+"co_dropable_sn_CTC"
+"co_dropable_sn_ltc"
+"CP0"
+"CP1"
+"CP2"
+"CP3"
+"d1_liftable_liftable_all"
+"d2_deliftable_sn_CTC"
+"d2_deliftable_sn_ltc"
+"d2_liftable_sn_CTC"
+"d2_liftable_sn_ltc"
+"d_appendable_sn"
+"d_deliftable1"
+"d_deliftable1_isuni"
+"d_deliftable2_bi"
+"d_deliftable2_sn"
+"d_deliftable2_sn_bi"
+"dedropable_sn"
+"dedropable_sn_CTC"
+"deg_inv_prec"
+"deg_inv_pred"
+"deg_iter"
+"deg_next_SO"
+"deg_O"
+"deg_SO"
+"deg_SO_gt"
+"deg_SO_inv_succ"
+"deg_SO_inv_succ_aux"
+"deg_SO_refl"
+"deg_SO_succ"
+"deg_SO_zero"
+"deliftable2_bi"
+"deliftable2_dx"
+"deliftable2_sn"
+"deliftable2_sn_bi"
+"deliftable2_sn_dx"
+"destruct_apair_apair_aux"
+"destruct_lbind_lbind_aux"
+"destruct_sort_sort_aux"
+"destruct_tatom_tatom_aux"
+"destruct_tpair_tpair_aux"
+"discr_apair_xy_x"
+"discr_apair_xy_y"
+"discr_lbind_x_xy"
+"discr_lbind_xy_x"
+"discr_tpair_xy_x"
+"discr_tpair_xy_y"
+"d_liftable1"
+"d_liftable1_all"
+"d_liftable1_isuni"
+"d_liftable2_bi"
+"d_liftable2_sn"
+"d_liftable2_sn_bi"
+"dropable_dx"
+"dropable_dx_CTC"
+"dropable_sn"
+"dropable_sn_CTC"
+"drops"
+"drops_after_fwd_drop2"
+"drops_atom"
+"drops_atom2_sex_conf"
+"drops_atom_F"
+"drops_bind2_fwd_rfw"
+"drops_conf"
+"drops_conf_div"
+"drops_conf_div_bind_isuni"
+"drops_conf_div_fcla"
+"drops_conf_div_isuni"
+"drops_conf_skip1"
+"drops_drop"
+"drops_eq_repl_back"
+"drops_eq_repl_fwd"
+"drops_F"
+"drops_fcla_fwd"
+"drops_fcla_fwd_le2"
+"drops_fcla_fwd_lt2"
+"drops_fcla_fwd_lt4"
+"drops_F_uni"
+"drops_fwd_drop2"
+"drops_fwd_drop2_aux"
+"drops_fwd_fcla"
+"drops_fwd_fcla_le2"
+"drops_fwd_fcla_lt2"
+"drops_fwd_isfin"
+"drops_fwd_isid"
+"drops_fwd_length_eq1"
+"drops_fwd_length_eq2"
+"drops_fwd_length_le4"
+"drops_fwd_lw"
+"drops_fwd_lw_lt"
+"drops_gen"
+"drops_inv_atom1"
+"drops_inv_atom1_aux"
+"drops_inv_atom2"
+"drops_inv_bind1_isuni"
+"drops_inv_bind2_isuni"
+"drops_inv_bind2_isuni_next"
+"drops_inv_drop1"
+"drops_inv_drop1_aux"
+"drops_inv_F"
+"drops_inv_gen"
+"drops_inv_isuni"
+"drops_inv_length_eq"
+"drops_inv_skip1"
+"drops_inv_skip1_aux"
+"drops_inv_skip2"
+"drops_inv_skip2_aux"
+"drops_inv_succ"
+"drops_inv_TF"
+"drops_inv_TF_aux"
+"drops_inv_uni"
+"drops_inv_x_bind_xy"
+"drops_isuni_ex"
+"drops_isuni_fwd_drop2"
+"drops_ldec_dec"
+"drops_lsubc_trans"
+"drops_mono"
+"drops_refl"
+"drops_seq_trans_next"
+"drops_sex_trans_next"
+"drops_sex_trans_push"
+"drops_skip"
+"drops_split_div"
+"drops_split_trans"
+"drops_split_trans_bind2"
+"drops_TF"
+"drops_tls_at"
+"drops_trans"
+"drops_trans_skip2"
+"eq_aarity_dec"
+"eq_bind1_dec"
+"eq_bind2_dec"
+"eq_bind_dec"
+"eq_false_inv_tpair_dx"
+"eq_false_inv_tpair_sn"
+"eq_flat2_dec"
+"eq_genv_dec"
+"eq_item0_dec"
+"eq_item2_dec"
+"eq_lenv_dec"
+"eq_term_dec"
+"ext2"
+"ext2_dec"
+"ext2_inv_pair"
+"ext2_inv_pair_dx"
+"ext2_inv_pair_dx_aux"
+"ext2_inv_pair_sn"
+"ext2_inv_pair_sn_aux"
+"ext2_inv_tc"
+"ext2_inv_unit"
+"ext2_inv_unit_dx"
+"ext2_inv_unit_dx_aux"
+"ext2_inv_unit_sn"
+"ext2_inv_unit_sn_aux"
+"ext2_pair"
+"ext2_refl"
+"ext2_sym"
+"ext2_tc"
+"ext2_tc_inj"
+"ext2_tc_pair"
+"ext2_tc_step"
+"ext2_trans"
+"ext2_unit"
+"f_dedropable_sn"
+"f_dropable_dx"
+"f_dropable_sn"
+"feqx"
+"feqx_canc_dx"
+"feqx_canc_sn"
+"feqx_fqus_trans"
+"feqx_intro_dx"
+"feqx_intro_sn"
+"feqx_inv_gen_dx"
+"feqx_inv_gen_sn"
+"feqx_refl"
+"feqx_sym"
+"feqx_tneqx_repl_dx"
+"feqx_trans"
+"flat2"
+"Flat2"
+"fold"
+"fold_atom"
+"fold_pair"
+"fold_unit"
+"fqu"
+"fqu_bind_dx"
+"fqu_clear"
+"fqu_drop"
+"fqu_flat_dx"
+"fqu_fqup"
+"fqu_fquq"
+"fqu_fwd_fw"
+"fqu_fwd_length_lref1"
+"fqu_fwd_length_lref1_aux"
+"fqu_gref"
+"fqu_inv_atom1"
+"fqu_inv_bind1"
+"fqu_inv_bind1_aux"
+"fqu_inv_bind1_true"
+"fqu_inv_flat1"
+"fqu_inv_flat1_aux"
+"fqu_inv_gref1"
+"fqu_inv_gref1_aux"
+"fqu_inv_gref1_bind"
+"fqu_inv_lref1"
+"fqu_inv_lref1_aux"
+"fqu_inv_lref1_bind"
+"fqu_inv_sort1"
+"fqu_inv_sort1_aux"
+"fqu_inv_sort1_bind"
+"fqu_inv_teqx"
+"fqu_inv_teqx_aux"
+"fqu_inv_zero1_pair"
+"fqu_lref_O"
+"fqu_lref_S"
+"fqup"
+"fqu_pair_sn"
+"fqup_bind_dx"
+"fqup_bind_dx_flat_dx"
+"fqup_clear"
+"fqup_drops_strap1"
+"fqup_drops_succ"
+"fqup_flat_dx"
+"fqup_flat_dx_bind_dx"
+"fqup_flat_dx_pair_sn"
+"fqup_fqus"
+"fqup_fqus_trans"
+"fqup_fwd_fw"
+"fqup_ind"
+"fqup_ind_dx"
+"fqup_inv_step_sn"
+"fqup_lref"
+"fqup_pair_sn"
+"fqup_strap1"
+"fqup_strap2"
+"fqup_trans"
+"fqup_wf_ind"
+"fqup_wf_ind_eq"
+"fqup_zeta"
+"fquq"
+"fquq_fqus"
+"fquq_fwd_fw"
+"fquq_fwd_length_lref1"
+"fquq_refl"
+"fqus"
+"fqus_drops"
+"fqus_fqup_trans"
+"fqus_fwd_fw"
+"fqus_ind"
+"fqus_ind_dx"
+"fqus_inv_atom1"
+"fqus_inv_bind1"
+"fqus_inv_bind1_true"
+"fqus_inv_flat1"
+"fqus_inv_fqup"
+"fqus_inv_fqu_sn"
+"fqus_inv_gref1"
+"fqus_inv_gref1_bind"
+"fqus_inv_lref1"
+"fqus_inv_lref1_bind"
+"fqus_inv_refl_atom3"
+"fqus_inv_sort1"
+"fqus_inv_sort1_bind"
+"fqus_inv_zero1_pair"
+"fqu_sort"
+"fqus_refl"
+"fqus_strap1"
+"fqus_strap1_fqu"
+"fqus_strap2"
+"fqus_strap2_fqu"
+"fqus_trans"
+"fqu_teqx_conf"
+"fqu_wf_ind"
+"frees"
+"frees_append_void"
+"frees_atom"
+"frees_atom_drops"
+"frees_bind"
+"frees_bind_void"
+"frees_eq_repl_back"
+"frees_eq_repl_fwd"
+"frees_flat"
+"frees_fwd_coafter"
+"frees_fwd_isfin"
+"frees_gref"
+"frees_ind_void"
+"frees_inv_append_void"
+"frees_inv_append_void_aux"
+"frees_inv_atom"
+"frees_inv_atom_aux"
+"frees_inv_bind"
+"frees_inv_bind_aux"
+"frees_inv_bind_void"
+"frees_inv_drops_next"
+"frees_inv_flat"
+"frees_inv_flat_aux"
+"frees_inv_gref"
+"frees_inv_gref_aux"
+"frees_inv_lifts"
+"frees_inv_lifts_ex"
+"frees_inv_lifts_SO"
+"frees_inv_lref"
+"frees_inv_lref_aux"
+"frees_inv_lref_drops"
+"frees_inv_pair"
+"frees_inv_pair_aux"
+"frees_inv_sort"
+"frees_inv_sort_aux"
+"frees_inv_unit"
+"frees_inv_unit_aux"
+"frees_lifts"
+"frees_lifts_SO"
+"frees_lref"
+"frees_lref_push"
+"frees_lref_pushs"
+"frees_mono"
+"frees_pair"
+"frees_pair_drops"
+"frees_req_conf"
+"frees_reqx_conf"
+"frees_sex_conf"
+"frees_sort"
+"frees_teqx_conf"
+"frees_teqx_conf_reqx"
+"frees_total"
+"frees_unit"
+"frees_unit_drops"
+"fsge_rex_trans"
+"fsle"
+"fsle_bind"
+"fsle_bind_dx_dx"
+"fsle_bind_dx_sn"
+"fsle_bind_eq"
+"fsle_bind_sn_ge"
+"fsle_flat"
+"fsle_flat_dx_dx"
+"fsle_flat_dx_sn"
+"fsle_flat_sn"
+"fsle_frees_trans"
+"fsle_frees_trans_eq"
+"fsle_fwd_pair_sn"
+"fsle_gref"
+"fsle_gref_bi"
+"fsle_inv_frees_eq"
+"fsle_inv_lifts_sn"
+"fsle_lifts_dx"
+"fsle_lifts_sn"
+"fsle_lifts_SO"
+"fsle_lifts_SO_sn"
+"fsle_pair_bi"
+"fsle_refl"
+"fsle_shift"
+"fsle_sort"
+"fsle_sort_bi"
+"fsle_trans_dx"
+"fsle_trans_rc"
+"fsle_trans_sn"
+"fsle_unit_bi"
+"f_transitive_next"
+"fw"
+"fw_clear"
+"fw_lpair_sn"
+"fw_shift"
+"fw_tpair_dx"
+"fw_tpair_sn"
+"GAtom"
+"gcp"
+"gcp2_all"
+"gcr"
+"gcr_aaa"
+"genv"
+"glength"
+"GPair"
+"GRef"
+"gw"
+"gw_pair"
+"is_apear_dec"
+"is_lifts_dec"
+"item0"
+"item2"
+"LAtom"
+"LBind"
+"length"
+"length_atom"
+"length_bind"
+"length_inv_succ_dx"
+"length_inv_succ_dx_ltail"
+"length_inv_succ_sn"
+"length_inv_succ_sn_ltail"
+"length_inv_zero_dx"
+"length_inv_zero_sn"
+"lenv"
+"lenv_case_tail"
+"lenv_ind_tail"
+"lex"
+"lex_atom"
+"lex_bind"
+"lex_bind_refl_dx"
+"lex_co"
+"lex_conf"
+"lex_confluent"
+"lex_CTC"
+"lex_CTC_ind_dx"
+"lex_CTC_ind_sn"
+"lex_CTC_inj"
+"lex_CTC_step_dx"
+"lex_CTC_step_sn"
+"lex_dropable_dx"
+"lex_dropable_sn"
+"lex_drops_conf_pair"
+"lex_drops_trans_pair"
+"lex_fwd_length"
+"lex_ind"
+"lex_inv_atom_dx"
+"lex_inv_atom_sn"
+"lex_inv_bind_dx"
+"lex_inv_bind_sn"
+"lex_inv_CTC"
+"lex_inv_pair"
+"lex_inv_pair_dx"
+"lex_inv_pair_sn"
+"lex_inv_unit_dx"
+"lex_inv_unit_sn"
+"lex_liftable_dedropable_sn"
+"lex_pair"
+"lex_refl"
+"lex_trans"
+"lex_transitive"
+"lex_unit"
+"liftable2_bi"
+"liftable2_dx"
+"liftable2_sn"
+"liftable2_sn_bi"
+"liftable2_sn_dx"
+"lifts"
+"lifts_applv"
+"liftsb"
+"liftsb_conf"
+"liftsb_div3"
+"liftsb_eq_repl_back"
+"liftsb_fwd_bw"
+"liftsb_fwd_isid"
+"lifts_bind"
+"liftsb_inj"
+"liftsb_inv_pair_dx"
+"liftsb_inv_pair_sn"
+"liftsb_inv_unit_dx"
+"liftsb_inv_unit_sn"
+"liftsb_mono"
+"liftsb_refl"
+"liftsb_split_trans"
+"liftsb_total"
+"liftsb_trans"
+"lifts_conf"
+"lifts_div3"
+"lifts_div4"
+"lifts_div4_one"
+"lifts_eq_repl_back"
+"lifts_eq_repl_fwd"
+"lifts_flat"
+"lifts_fwd_isid"
+"lifts_fwd_pair1"
+"lifts_fwd_pair2"
+"lifts_fwd_tw"
+"lifts_gref"
+"lifts_inj"
+"lifts_inv_applv1"
+"lifts_inv_applv2"
+"lifts_inv_atom1"
+"lifts_inv_atom2"
+"lifts_inv_bind1"
+"lifts_inv_bind1_aux"
+"lifts_inv_bind2"
+"lifts_inv_bind2_aux"
+"lifts_inv_flat1"
+"lifts_inv_flat1_aux"
+"lifts_inv_flat2"
+"lifts_inv_flat2_aux"
+"lifts_inv_gref1"
+"lifts_inv_gref1_aux"
+"lifts_inv_gref2"
+"lifts_inv_gref2_aux"
+"lifts_inv_lref1"
+"lifts_inv_lref1_aux"
+"lifts_inv_lref1_uni"
+"lifts_inv_lref2"
+"lifts_inv_lref2_aux"
+"lifts_inv_lref2_uni"
+"lifts_inv_lref2_uni_ge"
+"lifts_inv_lref2_uni_lt"
+"lifts_inv_pair_xy_x"
+"lifts_inv_pair_xy_y"
+"lifts_inv_push_succ_sn"
+"lifts_inv_push_zero_sn"
+"lifts_inv_sort1"
+"lifts_inv_sort1_aux"
+"lifts_inv_sort2"
+"lifts_inv_sort2_aux"
+"lifts_lref"
+"lifts_lref_ge"
+"lifts_lref_ge_minus"
+"lifts_lref_lt"
+"lifts_lref_uni"
+"lifts_mono"
+"lifts_push_lref"
+"lifts_push_zero"
+"lifts_refl"
+"lifts_simple_dx"
+"lifts_simple_sn"
+"lifts_sort"
+"lifts_split_div"
+"lifts_split_trans"
+"lifts_total"
+"lifts_trans"
+"lifts_trans4_one"
+"lifts_trans_uni"
+"lifts_uni"
+"liftsv"
+"liftsv_cons"
+"liftsv_inj"
+"liftsv_inv_cons1"
+"liftsv_inv_cons1_aux"
+"liftsv_inv_cons2"
+"liftsv_inv_cons2_aux"
+"liftsv_inv_nil1"
+"liftsv_inv_nil1_aux"
+"liftsv_inv_nil2"
+"liftsv_inv_nil2_aux"
+"liftsv_mono"
+"liftsv_nil"
+"liftsv_split_trans"
+"liftsv_total"
+"liftsv_trans"
+"LRef"
+"lsuba"
+"lsuba_aaa_conf"
+"lsuba_aaa_trans"
+"lsuba_atom"
+"lsuba_beta"
+"lsuba_bind"
+"lsuba_drops_conf_isuni"
+"lsuba_drops_trans_isuni"
+"lsuba_fwd_lsubr"
+"lsuba_inv_atom1"
+"lsuba_inv_atom1_aux"
+"lsuba_inv_atom2"
+"lsuba_inv_atom2_aux"
+"lsuba_inv_bind1"
+"lsuba_inv_bind1_aux"
+"lsuba_inv_bind2"
+"lsuba_inv_bind2_aux"
+"lsuba_lsubc"
+"lsuba_refl"
+"lsuba_trans"
+"lsubc"
+"lsubc_atom"
+"lsubc_beta"
+"lsubc_bind"
+"lsubc_drops_trans_isuni"
+"lsubc_fwd_lsubr"
+"lsubc_inv_atom1"
+"lsubc_inv_atom1_aux"
+"lsubc_inv_atom2"
+"lsubc_inv_atom2_aux"
+"lsubc_inv_bind1"
+"lsubc_inv_bind1_aux"
+"lsubc_inv_bind2"
+"lsubc_inv_bind2_aux"
+"lsubc_refl"
+"lsubf"
+"lsubf_atom"
+"lsubf_beta"
+"lsubf_beta_tl_dx"
+"lsubf_bind"
+"lsubf_bind_tl_dx"
+"lsubf_eq_repl_back1"
+"lsubf_eq_repl_back2"
+"lsubf_eq_repl_fwd1"
+"lsubf_eq_repl_fwd2"
+"lsubf_frees_trans"
+"lsubf_fwd_bind_tl"
+"lsubf_fwd_isid_dx"
+"lsubf_fwd_isid_sn"
+"lsubf_fwd_lsubr_isdiv"
+"lsubf_fwd_sle"
+"lsubf_inv_atom"
+"lsubf_inv_atom1"
+"lsubf_inv_atom1_aux"
+"lsubf_inv_atom2"
+"lsubf_inv_atom2_aux"
+"lsubf_inv_beta_sn"
+"lsubf_inv_bind_sn"
+"lsubf_inv_pair1"
+"lsubf_inv_pair1_aux"
+"lsubf_inv_pair2"
+"lsubf_inv_pair2_aux"
+"lsubf_inv_push1"
+"lsubf_inv_push1_aux"
+"lsubf_inv_push2"
+"lsubf_inv_push2_aux"
+"lsubf_inv_push_sn"
+"lsubf_inv_refl"
+"lsubf_inv_sor_dx"
+"lsubf_inv_unit1"
+"lsubf_inv_unit1_aux"
+"lsubf_inv_unit2"
+"lsubf_inv_unit2_aux"
+"lsubf_inv_unit_sn"
+"lsubf_push"
+"lsubf_refl"
+"lsubf_refl_eq"
+"lsubf_sor"
+"lsubf_unit"
+"lsubr"
+"lsubr_atom"
+"lsubr_beta"
+"lsubr_bind"
+"lsubr_fwd_bind1"
+"lsubr_fwd_bind2"
+"lsubr_fwd_drops2_abbr"
+"lsubr_fwd_drops2_bind"
+"lsubr_fwd_length"
+"lsubr_inv_abbr2"
+"lsubr_inv_abst1"
+"lsubr_inv_abst2"
+"lsubr_inv_atom1"
+"lsubr_inv_atom1_aux"
+"lsubr_inv_atom2"
+"lsubr_inv_atom2_aux"
+"lsubr_inv_bind1"
+"lsubr_inv_bind1_aux"
+"lsubr_inv_bind2"
+"lsubr_inv_bind2_aux"
+"lsubr_inv_pair2"
+"lsubr_inv_unit1"
+"lsubr_inv_unit2"
+"lsubr_lsubf"
+"lsubr_lsubf_isid"
+"lsubr_refl"
+"lsubr_trans"
+"lsubr_unit"
+"ltail_length"
+"lveq"
+"lveq_atom"
+"lveq_bind"
+"lveq_fwd_abst_bind_length_le"
+"lveq_fwd_bind_abst_length_le"
+"lveq_fwd_gen"
+"lveq_fwd_length"
+"lveq_fwd_length_eq"
+"lveq_fwd_length_le_dx"
+"lveq_fwd_length_le_sn"
+"lveq_fwd_length_minus"
+"lveq_fwd_length_plus"
+"lveq_fwd_pair_dx"
+"lveq_fwd_pair_sn"
+"lveq_inj"
+"lveq_inj_length"
+"lveq_inj_void_dx_le"
+"lveq_inj_void_sn_ge"
+"lveq_inv_atom_atom"
+"lveq_inv_atom_bind"
+"lveq_inv_bind"
+"lveq_inv_bind_atom"
+"lveq_inv_bind_O"
+"lveq_inv_pair_pair"
+"lveq_inv_succ"
+"lveq_inv_succ_aux"
+"lveq_inv_succ_dx"
+"lveq_inv_succ_sn"
+"lveq_inv_succ_sn_aux"
+"lveq_inv_void_dx_length"
+"lveq_inv_void_sn_length"
+"lveq_inv_void_succ_dx"
+"lveq_inv_void_succ_sn"
+"lveq_inv_zero"
+"lveq_inv_zero_aux"
+"lveq_length_eq"
+"lveq_length_fwd_dx"
+"lveq_length_fwd_sn"
+"lveq_refl"
+"lveq_sym"
+"lveq_void_dx"
+"lveq_void_sn"
+"lw"
+"lw_bind"
+"mk_ac"
+"mk_ac_props"
+"mk_gcp"
+"mk_gcr"
+"mk_sd"
+"mk_sd_props"
+"mk_sh"
+"mk_sh_acyclic"
+"mk_sh_decidable"
+"mk_sh_lt"
+"nexts_le"
+"nexts_lt"
+"nf"
+"R_confluent2_rex"
+"req"
+"req_feqx_trans"
+"req_fsle_comp"
+"req_fwd_rex"
+"req_inv_bind"
+"req_inv_flat"
+"req_inv_lifts_bi"
+"req_inv_lref_bind_dx"
+"req_inv_lref_bind_sn"
+"req_inv_zero_pair_dx"
+"req_inv_zero_pair_sn"
+"req_refl"
+"req_reqx"
+"req_reqx_trans"
+"req_rex_trans"
+"req_transitive"
+"reqx"
+"reqx_atom"
+"reqx_bind"
+"reqx_bind_repl_dx"
+"reqx_bind_void"
+"reqx_canc_dx"
+"reqx_canc_sn"
+"reqx_dec"
+"reqx_flat"
+"reqx_fqup_trans"
+"reqx_fquq_trans"
+"reqx_fqus_trans"
+"reqx_fqu_trans"
+"reqx_fsge_comp"
+"reqx_fwd_bind_dx"
+"reqx_fwd_bind_dx_void"
+"reqx_fwd_dx"
+"reqx_fwd_flat_dx"
+"reqx_fwd_length"
+"reqx_fwd_pair_sn"
+"reqx_fwd_zero_pair"
+"reqx_gref"
+"reqx_gref_length"
+"reqx_inv_atom_dx"
+"reqx_inv_atom_sn"
+"reqx_inv_bind"
+"reqx_inv_bind_void"
+"reqx_inv_flat"
+"reqx_inv_lifts_bi"
+"reqx_inv_lifts_dx"
+"reqx_inv_lifts_sn"
+"reqx_inv_lref"
+"reqx_inv_lref_bind_dx"
+"reqx_inv_lref_bind_sn"
+"reqx_inv_lref_pair_bi"
+"reqx_inv_lref_pair_dx"
+"reqx_inv_lref_pair_sn"
+"reqx_inv_zero"
+"reqx_inv_zero_pair_dx"
+"reqx_inv_zero_pair_sn"
+"reqx_lifts_bi"
+"reqx_lifts_sn"
+"reqx_lref"
+"reqx_pair"
+"reqx_pair_refl"
+"reqx_refl"
+"reqx_repl"
+"reqx_rneqx_trans"
+"reqx_sort"
+"reqx_sort_length"
+"reqx_sym"
+"reqx_trans"
+"reqx_unit"
+"reqx_unit_length"
+"rex"
+"rex_atom"
+"rex_bind"
+"rex_bind_dx_split"
+"rex_bind_dx_split_void"
+"rex_bind_repl_dx"
+"rex_bind_void"
+"rex_co"
+"rex_conf"
+"rex_confluent"
+"rex_dec"
+"rex_dropable_dx"
+"rex_dropable_sn"
+"rex_flat"
+"rex_flat_dx_split"
+"rex_fsge_compatible"
+"rex_fsle_compatible"
+"rex_fwd_bind_dx"
+"rex_fwd_bind_dx_void"
+"rex_fwd_dx"
+"rex_fwd_flat_dx"
+"rex_fwd_length"
+"rex_fwd_pair_sn"
+"rex_fwd_zero_pair"
+"rex_gref"
+"rex_gref_length"
+"rex_inv_atom_dx"
+"rex_inv_atom_sn"
+"rex_inv_bind"
+"rex_inv_bind_void"
+"rex_inv_flat"
+"rex_inv_frees"
+"rex_inv_gref"
+"rex_inv_gref_bind_dx"
+"rex_inv_gref_bind_sn"
+"rex_inv_lex_req"
+"rex_inv_lifts_bi"
+"rex_inv_lref"
+"rex_inv_lref_bind_dx"
+"rex_inv_lref_bind_sn"
+"rex_inv_lref_pair_bi"
+"rex_inv_lref_pair_dx"
+"rex_inv_lref_pair_sn"
+"rex_inv_lref_unit_dx"
+"rex_inv_lref_unit_sn"
+"rex_inv_sort"
+"rex_inv_sort_bind_dx"
+"rex_inv_sort_bind_sn"
+"rex_inv_zero"
+"rex_inv_zero_length"
+"rex_inv_zero_pair_dx"
+"rex_inv_zero_pair_sn"
+"rex_inv_zero_unit_dx"
+"rex_inv_zero_unit_sn"
+"rex_isid"
+"rex_lex"
+"rex_liftable_dedropable_sn"
+"rex_lifts_bi"
+"rex_lref"
+"rex_pair"
+"rex_pair_refl"
+"rex_pair_sn_split"
+"rex_refl"
+"rexs"
+"rexs_atom"
+"rexs_co"
+"rexs_fwd_bind_dx"
+"rexs_fwd_bind_dx_void"
+"rexs_fwd_flat_dx"
+"rexs_fwd_length"
+"rexs_fwd_pair_sn"
+"rexs_gref"
+"rexs_ind_dx"
+"rexs_ind_sn"
+"rexs_inv_atom_dx"
+"rexs_inv_atom_sn"
+"rexs_inv_bind"
+"rexs_inv_bind_void"
+"rexs_inv_flat"
+"rexs_inv_gref"
+"rexs_inv_gref_bind_dx"
+"rexs_inv_gref_bind_sn"
+"rexs_inv_lex_req"
+"rexs_inv_sort"
+"rexs_inv_sort_bind_dx"
+"rexs_inv_sort_bind_sn"
+"rexs_lex"
+"rexs_lex_req"
+"rexs_lref"
+"rex_sort"
+"rex_sort_length"
+"rexs_pair"
+"rexs_pair_refl"
+"rexs_refl"
+"rexs_sort"
+"rexs_step_dx"
+"rexs_step_sn"
+"rexs_sym"
+"rexs_tc"
+"rexs_trans"
+"rexs_unit"
+"rex_sym"
+"rex_trans_fsle"
+"rex_transitive"
+"rex_trans_next"
+"rex_unit"
+"rex_unit_length"
+"rex_unit_sn"
+"R_fsge_compatible"
+"rfw"
+"rfw_clear"
+"rfw_lpair_dx"
+"rfw_lpair_sn"
+"rfw_shift"
+"rfw_tpair_dx"
+"rfw_tpair_sn"
+"rneqx_inv_bind"
+"rneqx_inv_bind_void"
+"rneqx_inv_flat"
+"rneqx_reqx_canc_dx"
+"rneqx_reqx_div"
+"rnex_inv_bind"
+"rnex_inv_bind_void"
+"rnex_inv_flat"
+"R_pw_confluent2_sex"
+"S1"
+"S2"
+"S3"
+"S5"
+"S6"
+"S7"
+"sd"
+"sd_d"
+"sd_d_correct"
+"sd_d_props"
+"sd_d_SS"
+"sd_O"
+"sd_O_props"
+"sd_props"
+"sd_SO"
+"sd_SO_props"
+"seq"
+"seq_canc_dx"
+"seq_canc_sn"
+"seq_co_dedropable_sn"
+"seq_co_dropable_dx"
+"seq_co_dropable_sn"
+"seq_drops_conf_next"
+"seq_drops_trans_next"
+"seq_eq_repl_back"
+"seq_eq_repl_fwd"
+"seq_fwd_length"
+"seq_inv_atom1"
+"seq_inv_atom2"
+"seq_inv_next"
+"seq_inv_next1"
+"seq_inv_next2"
+"seq_inv_push"
+"seq_inv_push1"
+"seq_inv_push2"
+"seq_inv_tl"
+"seq_join"
+"seq_meet"
+"seq_refl"
+"seq_sym"
+"seq_trans"
+"sex"
+"sex_atom"
+"sex_canc_dx"
+"sex_canc_sn"
+"sex_co"
+"sex_co_dropable_dx"
+"sex_co_dropable_sn"
+"sex_co_isid"
+"sex_conf"
+"sex_dec"
+"sex_dropable_dx_aux"
+"sex_drops_conf_next"
+"sex_drops_conf_push"
+"sex_drops_trans_next"
+"sex_drops_trans_push"
+"sex_eq_repl_back"
+"sex_eq_repl_fwd"
+"sex_fwd_bind"
+"sex_fwd_length"
+"sex_inv_atom1"
+"sex_inv_atom1_aux"
+"sex_inv_atom2"
+"sex_inv_atom2_aux"
+"sex_inv_next"
+"sex_inv_next1"
+"sex_inv_next1_aux"
+"sex_inv_next2"
+"sex_inv_next2_aux"
+"sex_inv_push"
+"sex_inv_push1"
+"sex_inv_push1_aux"
+"sex_inv_push2"
+"sex_inv_push2_aux"
+"sex_inv_tc_dx"
+"sex_inv_tc_sn"
+"sex_inv_tl"
+"sex_join"
+"sex_length_cfull"
+"sex_length_isid"
+"sex_liftable_co_dedropable_bi"
+"sex_liftable_co_dedropable_sn"
+"sex_meet"
+"sex_next"
+"sex_pair_repl"
+"sex_push"
+"sex_refl"
+"sex_sdj"
+"sex_sdj_split"
+"sex_sle_split"
+"sex_sym"
+"sex_tc_dx"
+"sex_tc_inj_dx"
+"sex_tc_inj_sn"
+"sex_tc_next"
+"sex_tc_next_dx"
+"sex_tc_next_sn"
+"sex_tc_push"
+"sex_tc_push_dx"
+"sex_tc_push_sn"
+"sex_tc_refl"
+"sex_tc_step_dx"
+"sex_trans"
+"sex_trans_gen"
+"sex_trans_id_cfull"
+"sex_transitive"
+"sh"
+"sh_acyclic"
+"sh_decidable"
+"sh_lt"
+"sh_lt_acyclic"
+"sh_lt_dec"
+"sh_lt_nexts_inv_lt"
+"simple"
+"simple_atom"
+"simple_dec_ex"
+"simple_flat"
+"simple_inv_bind"
+"simple_inv_bind_aux"
+"simple_inv_pair"
+"simple_teqo_repl_dx"
+"simple_teqo_repl_sn"
+"sle_seq_trans"
+"sle_sex_conf"
+"sle_sex_trans"
+"Sort"
+"s_rs_transitive_isid"
+"s_rs_transitive_lex_inv_isid"
+"TAtom"
+"tc_f_dedropable_sn"
+"tc_f_dropable_dx"
+"tc_f_dropable_sn"
+"teqo"
+"teqo_canc_dx"
+"teqo_canc_sn"
+"teqo_dec"
+"teqo_gref"
+"teqo_inv_applv_bind_simple"
+"teqo_inv_gref1"
+"teqo_inv_gref1_aux"
+"teqo_inv_lifts_bi"
+"teqo_inv_lref1"
+"teqo_inv_lref1_aux"
+"teqo_inv_pair"
+"teqo_inv_pair1"
+"teqo_inv_pair1_aux"
+"teqo_inv_pair2"
+"teqo_inv_pair2_aux"
+"teqo_inv_sort1"
+"teqo_inv_sort1_aux"
+"teqo_lifts_bi"
+"teqo_lifts_dx"
+"teqo_lifts_sn"
+"teqo_lref"
+"teqo_pair"
+"teqo_refl"
+"teqo_sort"
+"teqo_sym"
+"teqo_trans"
+"teqx"
+"teqx_canc_dx"
+"teqx_canc_sn"
+"teqx_dec"
+"teqx_ext"
+"teqx_feqx"
+"teqx_fqup_trans"
+"teqx_fquq_trans"
+"teqx_fqus_trans"
+"teqx_fqu_trans"
+"teqx_fwd_atom1"
+"teqx_gref"
+"teqx_inv_gref1"
+"teqx_inv_gref1_aux"
+"teqx_inv_lifts_bi"
+"teqx_inv_lifts_dx"
+"teqx_inv_lifts_sn"
+"teqx_inv_lref1"
+"teqx_inv_lref1_aux"
+"teqx_inv_pair"
+"teqx_inv_pair1"
+"teqx_inv_pair1_aux"
+"teqx_inv_pair2"
+"teqx_inv_pair_xy_x"
+"teqx_inv_pair_xy_y"
+"teqx_inv_sort1"
+"teqx_inv_sort1_aux"
+"teqx_inv_sort2"
+"teqx_lifts_bi"
+"teqx_lifts_dx"
+"teqx_lifts_inv_pair_sn"
+"teqx_lifts_sn"
+"teqx_lref"
+"teqx_pair"
+"teqx_refl"
+"teqx_repl"
+"teqx_reqx_conf"
+"teqx_reqx_div"
+"teqx_rex_conf"
+"teqx_rex_div"
+"teqx_sort"
+"teqx_sym"
+"teqx_teqo"
+"teqx_tneqx_trans"
+"teqx_trans"
+"teqx_tweq"
+"term"
+"tneqx_inv_pair"
+"tneqx_teqx_canc_dx"
+"TPair"
+"tw"
+"tweq"
+"tweq_abbr"
+"tweq_abbr_neg"
+"tweq_abbr_pos"
+"tweq_abst"
+"tweq_appl"
+"tweq_canc_dx"
+"tweq_canc_sn"
+"tweq_cast"
+"tweq_dec"
+"tweq_fwd_pair_bi"
+"tweq_fwd_pair_sn"
+"tweq_gref"
+"tweq_inv_abbr_neg_sn"
+"tweq_inv_abbr_pos_bi"
+"tweq_inv_abbr_pos_sn"
+"tweq_inv_abbr_pos_x_lifts_y_y"
+"tweq_inv_abbr_sn"
+"tweq_inv_abbr_sn_aux"
+"tweq_inv_abst_sn"
+"tweq_inv_abst_sn_aux"
+"tweq_inv_appl_bi"
+"tweq_inv_appl_sn"
+"tweq_inv_appl_sn_aux"
+"tweq_inv_cast_bi"
+"tweq_inv_cast_sn"
+"tweq_inv_cast_sn_aux"
+"tweq_inv_cast_xy_y"
+"tweq_inv_gref_sn"
+"tweq_inv_gref_sn_aux"
+"tweq_inv_lifts_bi"
+"tweq_inv_lref_sn"
+"tweq_inv_lref_sn_aux"
+"tweq_inv_sort_sn"
+"tweq_inv_sort_sn_aux"
+"tweq_lifts_bi"
+"tweq_lifts_dx"
+"tweq_lifts_sn"
+"tweq_lref"
+"tweq_refl"
+"tweq_repl"
+"tweq_simple_trans"
+"tweq_sort"
+"tweq_sym"
+"tweq_trans"
+"tw_le_pair_dx"
+"tw_pos"
+"Void"