--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "nat/nat.ma".
+
+definition sequence := λO:Type.nat → O.
+
+definition fun_of_sequence: ∀O:Type.sequence O → nat → O ≝ λO.λx:sequence O.x.
+
+coercion cic:/matita/dama/sequence/fun_of_sequence.con 1.
--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "sequence.ma".
+include "ordered_set.ma".
+
+(* Definition 2.4 *)
+definition upper_bound ≝ λO:ordered_set.λa:sequence O.λu:O.∀n:nat.a n ≤ u.
+
+definition strong_sup ≝
+ λO:ordered_set.λs:sequence O.λx.upper_bound ? s x ∧ (∀y:O.x ≰ y → ∃n.s n ≰ y).
+
+definition increasing ≝ λO:ordered_set.λa:sequence O.∀n:nat.a n ≤ a (S n).
+
+notation < "x \nbsp 'is_upper_bound' \nbsp s" non associative with precedence 50
+ for @{'upper_bound $s $x}.
+notation < "s \nbsp 'is_increasing'" non associative with precedence 50
+ for @{'increasing $s}.
+notation < "x \nbsp 'is_strong_sup' \nbsp s" non associative with precedence 50
+ for @{'strong_sup $s $x}.
+
+notation > "x 'is_upper_bound' s" non associative with precedence 50
+ for @{'upper_bound $s $x}.
+notation > "s 'is_increasing'" non associative with precedence 50
+ for @{'increasing $s}.
+notation > "x 'is_strong_sup' s" non associative with precedence 50
+ for @{'strong_sup $s $x}.
+
+interpretation "Ordered set upper bound" 'upper_bound s x =
+ (cic:/matita/dama/supremum/upper_bound.con _ s x).
+interpretation "Ordered set increasing" 'increasing s =
+ (cic:/matita/dama/supremum/increasing.con _ s).
+interpretation "Ordered set strong sup" 'strong_sup s x =
+ (cic:/matita/dama/supremum/strong_sup.con _ s x).
+
+include "bishop_set.ma".
+
+lemma uniq_supremum:
+ ∀O:ordered_set.∀s:sequence O.∀t1,t2:O.
+ t1 is_upper_bound s → t2 is_upper_bound s → t1 ≈ t2.
+intros (O s t1 t2 Ht1 Ht2); apply le_le_eq; cases Ht1; cases Ht2;
+