--- /dev/null
+include "logic/cprop_connectives.ma".
+include "igft.ma".
+
+axiom A: Type.
+axiom S_: A → Ω^A.
+
+inductive Unit : Type := unit : Unit.
+
+definition axs: AxiomSet.
+ constructor 1;
+ [ apply A;
+ | intro; apply Unit;
+ | intros; apply (S_ a)]
+qed.
+
+definition S : axs → Ω^axs ≝ S_.
+
+definition emptyset: Ω^axs ≝ {x | False}.
+
+notation "∅︀" non associative with precedence 90 for @{'emptyset}.
+interpretation "emptyset" 'emptyset = emptyset.
+notation "∅" non associative with precedence 91 for @{'emptyset1}.
+interpretation "emptyset1" 'emptyset1 = emptyset.
+
+definition Z: Ω \sup axs ≝ {x | x ⊲ ∅}.
+
+theorem cantor: ∀a:axs. ¬ (Z ⊆ S a ∧ S a ⊆ Z).
+ intros 2; cases H; clear H;
+ cut (a ⊲ S a);
+ [2: apply infinity; [apply unit] change with (S a ⊲ S a);
+ intros 2; apply refl; apply H;]
+ cut (a ⊲ ∅︀);
+ [2: apply (trans (S a)); [ assumption ]
+ intros 2; lapply (H2 ? H) as K;
+ change in K with (x ⊲ ∅ );
+ assumption;]
+ cut (a ε S a);
+ [2: apply H1; apply Hcut1;]
+ generalize in match Hcut2; clear Hcut2;
+ elim Hcut1 using covers_elim;
+ [ intros 2; cases H;
+ | intros; apply (H3 a1); [apply H4|apply H4]]
+qed.
C_ : ∀a.I_ a → Ω ^ S
}.
+notation > "∀ident a∈A.P" right associative with precedence 20
+for @{ ∀${ident a} : S $A. $P }.
+notation > "λident a∈A.P" right associative with precedence 20
+for @{ λ${ident a} : S $A. $P }.
+
notation "'I'" non associative with precedence 90 for @{'I}.
interpretation "I" 'I = (I_ _).
notation < "'I' \lpar a \rpar" non associative with precedence 90 for @{'I1 $a}.
interpretation "C a i" 'C2 a i = (C_ _ a i).
definition in_subset :=
- λA:AxiomSet.λa:A.λU:Ω^A.content A U a.
+ λA:AxiomSet.λa∈A.λU:Ω^A.content A U a.
notation "hvbox(a break εU)" non associative with precedence 50 for
@{'in_subset $a $U}.
definition for_all ≝ λA:AxiomSet.λU:Ω^A.λP:A → CProp.∀x.xεU → P x.
inductive covers (A : AxiomSet) (U : Ω ^ A) : A → CProp :=
- | reflexivity : ∀a.aεU → covers A U a
- | infinity : ∀a.∀i : I a. for_all A (C a i) (covers A U) → covers A U a.
+ | refl_ : ∀a.aεU → covers A U a
+ | infinity_ : ∀a.∀i : I a. for_all A (C a i) (covers A U) → covers A U a.
+
+notation "'refl'" non associative with precedence 90 for @{'refl}.
+interpretation "refl" 'refl = (refl_ _ _ _).
+
+notation "'infinity'" non associative with precedence 90 for @{'infinity}.
+interpretation "infinity" 'infinity = (infinity_ _ _ _).
notation "U ⊲ V" non associative with precedence 45
for @{ 'covers_subsets $U $V}.
interpretation "subseteq" 'subseteq u v = (subseteq _ u v).
-definition covers_elim ≝
+
+definition covers_elim_ ≝
λA:AxiomSet.λU,P: Ω^A.λH1: U ⊆ P.
- λH2:∀a:A.∀j:I a. C a j ⊲ U → C a j ⊆ P → aεP.
+ λH2:∀a∈A.∀j:I a. C a j ⊲ U → C a j ⊆ P → aεP.
let rec aux (a:A) (p:a ⊲ U) on p : aεP ≝
- match p return λaa.λ_:aa ⊲ U.aa ε P with
- [ reflexivity a q ⇒ H1 a q
- | infinity a j q ⇒ H2 a j q (λb.λr. aux b (q b r))]
+ match p return λr.λ_:r ⊲ U.r ε P with
+ [ refl_ a q ⇒ H1 a q
+ | infinity_ a j q ⇒ H2 a j q (λb.λr. aux b (q b r))]
in
aux.
-
+
interpretation "char" 'subset p = (mk_powerset _ p).
+
+definition covers_elim :
+ ∀A:AxiomSet.∀U: Ω^A.∀P:A→CProp.∀H1: U ⊆ {x | P x}.
+ ∀H2:∀a∈A.∀j:I a. C a j ⊲ U → C a j ⊆ {x | P x} → P a.
+ ∀a∈A.a ⊲ U → P a.
+change in ⊢ (?→?→?→?→?→?→?→%) with (aε{x|P x});
+intros 3; apply covers_elim_;
+qed.
-theorem transitivity: ∀A:AxiomSet.∀a:A.∀U,V. a ⊲ U → U ⊲ V → a ⊲ V.
+theorem trans_: ∀A:AxiomSet.∀a∈A.∀U,V. a ⊲ U → U ⊲ V → a ⊲ V.
intros;
- apply (covers_elim ?? {a | a ⊲ V} ??? H);
+ elim H using covers_elim;
[ intros 2; apply (H1 ? H2);
- | intros; apply (infinity ??? j);
+ | intros; apply (infinity j);
intros 2; apply (H3 ? H4);]
qed.
+
+notation "'trans'" non associative with precedence 90 for @{'trans}.
+interpretation "trans" 'trans = (trans_ _ _).
+