parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the
star, and to traverse it, stopping in front of a; the second point just stops in front of b.
No point reached that end of b^*a + b hence no further propagation is possible. In conclusion:
- •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉
+ •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉
*)
include "tutorial/chapter7.ma".
the end of the expression.
Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2.
If we define
- 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1∨ b2〉
+ 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1∨ b2〉
then, we just have •(i1+i2) = •(i1)⊕ •(i2).
*)
include "tutorial/chapter7.ma".
-definition lo ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λa,b:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 a \ 5a title="pitem or" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 \ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 b,\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 a \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 b〉.
+definition lo ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λa,b:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 a \ 5a title="pitem or" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 \ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 b,\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 a \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 b〉.
notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}.
interpretation "oplus" 'oplus a b = (lo ? a b).
-lemma lo_def: ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀b1,b2. \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,b1〉\ 5a title="oplus" href="cic:/fakeuri.def(1)"\ 6⊕\ 5/a\ 6\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i2,b2〉\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1\ 5a title="pitem or" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6i2,b1\ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6b2〉.
+lemma lo_def: ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀b1,b2. \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,b1〉\ 5a title="oplus" href="cic:/fakeuri.def(1)"\ 6⊕\ 5/a\ 6\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i2,b2〉\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1\ 5a title="pitem or" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6i2,b1\ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6b2〉.
// qed.
(*
e ▹ i is a general operation of concatenation between a pre and an item, defined by
cases on the boolean in e:
- 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2)
- 〈i1,false〉 ▹ i2 = i1 · i2
+ 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2)
+ 〈i1,false〉 ▹ i2 = i1 · i2
In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple:
- i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉
+ i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉
Let us come to the formalized definitions:
*)
definition pre_concat_r ≝ λS:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.λi:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.λe:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
- match e with [ mk_Prod i1 b ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i1, b〉].
+ match e with [ mk_Prod i1 b ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i1, b〉].
notation "i ◃ e" left associative with precedence 60 for @{'lhd $i $e}.
interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e).
match e1 with
[ mk_Prod i1 b1 ⇒ match b1 with
[ true ⇒ (i1 \ 5a title="pre_concat_r" href="cic:/fakeuri.def(1)"\ 6◃\ 5/a\ 6 (bcast ? i2))
- | false ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉
+ | false ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉
]
].
let rec eclose (S: \ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6) (i: \ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S) on i : \ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S ≝
match i with
- [ pz ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"\ 6pz\ 5/a\ 6 ?, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 〉
- | pe ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem epsilon" href="cic:/fakeuri.def(1)"\ 6ϵ\ 5/a\ 6, \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 〉
- | ps x ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem pp" href="cic:/fakeuri.def(1)"\ 6`\ 5/a\ 6.x, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉
- | pp x ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem pp" href="cic:/fakeuri.def(1)"\ 6`\ 5/a\ 6.x, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 〉
+ [ pz ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"\ 6pz\ 5/a\ 6 ?, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 〉
+ | pe ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem epsilon" href="cic:/fakeuri.def(1)"\ 6ϵ\ 5/a\ 6, \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 〉
+ | ps x ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem pp" href="cic:/fakeuri.def(1)"\ 6`\ 5/a\ 6.x, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉
+ | pp x ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6 \ 5a title="pitem pp" href="cic:/fakeuri.def(1)"\ 6`\ 5/a\ 6.x, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 〉
| po i1 i2 ⇒ •i1 \ 5a title="oplus" href="cic:/fakeuri.def(1)"\ 6⊕\ 5/a\ 6 •i2
| pc i1 i2 ⇒ •i1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2
- | pk i ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (•i))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉].
+ | pk i ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (•i))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉].
notation "• x" non associative with precedence 60 for @{'eclose $x}.
interpretation "eclose" 'eclose x = (eclose ? x).
(* Here are a few simple properties of ▹ and •(-) *)
lemma pcl_true : ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 i1 \ 5a title="pre_concat_r" href="cic:/fakeuri.def(1)"\ 6◃\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2).
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 i1 \ 5a title="pre_concat_r" href="cic:/fakeuri.def(1)"\ 6◃\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2).
// qed.
lemma pcl_true_bis : ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 \ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2)〉.
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 \ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2)〉.
#S #i1 #i2 normalize cases (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2) // qed.
lemma pcl_false: ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉.
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i2 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉.
// qed.
lemma eclose_plus: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
// qed.
lemma eclose_star: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
- \ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6* \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6(\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉.
+ \ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6* \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6(\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉.
// qed.
(* The definition of •(-) (eclose) can then be lifted from items to pres
definition lift ≝ λS.λf:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S →\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.λe:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
match e with
- [ mk_Prod i b ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (f i), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (f i) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 b〉].
+ [ mk_Prod i b ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (f i), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (f i) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 b〉].
definition preclose ≝ λS. \ 5a href="cic:/matita/tutorial/chapter8/lift.def(2)"\ 6lift\ 5/a\ 6 S (\ 5a href="cic:/matita/tutorial/chapter8/eclose.fix(0,1,4)"\ 6eclose\ 5/a\ 6 S).
interpretation "preclose" 'eclose x = (preclose ? x).
interpretation "lifted cat" 'odot e1 e2 = (lifted_cat ? e1 e2).
lemma odot_true_b : ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀b.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i2,b〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2)),\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 b〉.
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i2,b〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 (\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2)),\ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 b〉.
#S #i1 #i2 #b normalize in ⊢ (??%?); cases (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i2) //
qed.
lemma odot_false_b : ∀S.∀i1,i2:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.∀b.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i2,b〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2 ,b〉.
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i2,b〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1 \ 5a title="pitem cat" href="cic:/fakeuri.def(1)"\ 6·\ 5/a\ 6 i2 ,b〉.
//
qed.
match e with
[ mk_Prod i1 b1 ⇒
match b1 with
- [true ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter8/eclose.fix(0,1,4)"\ 6eclose\ 5/a\ 6 ? i1))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*, \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉
- |false ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉
+ [true ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter8/eclose.fix(0,1,4)"\ 6eclose\ 5/a\ 6 ? i1))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*, \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉
+ |false ⇒ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i1\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉
]
].
notation "a^⊛" non associative with precedence 90 for @{'lk $a}.
lemma ostar_true: ∀S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6⊛ \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*, \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉.
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6⊛ \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6(\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (\ 5a title="eclose" href="cic:/fakeuri.def(1)"\ 6•\ 5/a\ 6i))\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*, \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉.
// qed.
lemma ostar_false: ∀S.∀i:\ 5a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"\ 6pitem\ 5/a\ 6 S.
- \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6⊛ \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉.
+ \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉\ 5a title="lk" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6⊛ \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i\ 5a title="pitem star" href="cic:/fakeuri.def(1)"\ 6^\ 5/a\ 6*, \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉.
// qed.
lemma erase_ostar: ∀S.∀e:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.
#S * #i * // qed.
lemma sem_odot_true: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀e1:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.∀i.
- \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉} \ 5a title="extensional equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 61 \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i} \ 5a title="union" href="cic:/fakeuri.def(1)"\ 6∪\ 5/a\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"\ 6{\ 5/a\ 6 \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 ] }.
+ \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉} \ 5a title="extensional equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 61 \ 5a title="in_prl" href="cic:/fakeuri.def(1)"\ 6\sem\ 5/a\ 6{e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i} \ 5a title="union" href="cic:/fakeuri.def(1)"\ 6∪\ 5/a\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"\ 6{\ 5/a\ 6 \ 5a title="nil" href="cic:/fakeuri.def(1)"\ 6[\ 5/a\ 6 ] }.
#S #e1 #i
-cut (e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6(e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉) [//]
+cut (e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6(e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6〉) [//]
#H >H cases (e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i) #i1 #b1 cases b1
[>\ 5a href="cic:/matita/tutorial/chapter7/sem_pre_true.def(9)"\ 6sem_pre_true\ 5/a\ 6 @\ 5a href="cic:/matita/tutorial/chapter4/eqP_trans.def(3)"\ 6eqP_trans\ 5/a\ 6 [||@\ 5a href="cic:/matita/tutorial/chapter4/eqP_sym.def(3)"\ 6eqP_sym\ 5/a\ 6 @\ 5a href="cic:/matita/tutorial/chapter4/union_assoc.def(3)"\ 6union_assoc\ 5/a\ 6]
@\ 5a href="cic:/matita/tutorial/chapter4/eqP_union_l.def(3)"\ 6eqP_union_l\ 5/a\ 6 /\ 5span class="autotactic"\ 62\ 5span class="autotrace"\ 6 trace \ 5a href="cic:/matita/tutorial/chapter4/eqP_sym.def(3)"\ 6eqP_sym\ 5/a\ 6\ 5/span\ 6\ 5/span\ 6/
qed.
lemma eq_odot_false: ∀S:\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"\ 6DeqSet\ 5/a\ 6.∀e1:\ 5a href="cic:/matita/tutorial/chapter7/pre.def(1)"\ 6pre\ 5/a\ 6 S.∀i.
- e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i.
+ e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i.
#S #e1 #i
-cut (e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6(e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉) [//]
+cut (e1 \ 5a title="lifted cat" href="cic:/fakeuri.def(1)"\ 6⊙\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6i,\ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a title="Pair construction" href="cic:/fakeuri.def(1)"\ 6〈\ 5/a\ 6\ 5a title="pair pi1" href="cic:/fakeuri.def(1)"\ 6\fst\ 5/a\ 6 (e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i), \ 5a title="pair pi2" href="cic:/fakeuri.def(1)"\ 6\snd\ 5/a\ 6(e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i) \ 5a title="boolean or" href="cic:/fakeuri.def(1)"\ 6∨\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6〉) [//]
cases (e1 \ 5a title="item-pre concat" href="cic:/fakeuri.def(1)"\ 6▹\ 5/a\ 6 i) #i1 #b1 cases b1 #H @H
qed.