//; nqed.
ntheorem le_plus_to_le: ∀a,n,m. a + n ≤ a + m → n ≤ m.
-#a; nelim a; /3/; nqed.
-
-(* times
-theorem monotonic_le_times_r:
-\forall n:nat.monotonic nat le (\lambda m. n * m).
-simplify.intros.elim n.
-simplify.apply le_O_n.
-simplify.apply le_plus.
-assumption.
-assumption.
-qed.
+#a; nelim a; /3/; nqed.
-theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m
-\def monotonic_le_times_r.
+(* times *)
+ntheorem monotonic_le_times_r:
+∀n:nat.monotonic nat le (λm. n * m).
+#n; #x; #y; #lexy; nelim n; nnormalize;//;
+#a; #lea; napply le_plus;//; (* lentissimo /2/ *)
+nqed.
-theorem monotonic_le_times_l:
-\forall m:nat.monotonic nat le (\lambda n.n*m).
-simplify.intros.
-rewrite < sym_times.rewrite < (sym_times m).
-apply le_times_r.assumption.
-qed.
+(*
+ntheorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m
+\def monotonic_le_times_r. *)
-theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p
-\def monotonic_le_times_l.
+ntheorem monotonic_le_times_l:
+∀m:nat.monotonic nat le (λn.n*m).
+/2/; nqed.
-theorem le_times: \forall n1,n2,m1,m2:nat. n1 \le n2 \to m1 \le m2
-\to n1*m1 \le n2*m2.
-intros.
-apply (trans_le ? (n2*m1)).
-apply le_times_l.assumption.
-apply le_times_r.assumption.
-qed.
+(*
+theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p
+\def monotonic_le_times_l. *)
+
+ntheorem le_times: ∀n1,n2,m1,m2:nat.
+n1 ≤ n2 → m1 ≤ m2 → n1*m1 ≤ n2*m2.
+#n1; #n2; #m1; #m2; #len; #lem;
+napply transitive_le; (* too slow *)
+ ##[ ##| napply monotonic_le_times_l;//;
+ ##| napply monotonic_le_times_r;//;
+ ##]
+nqed.
-theorem le_times_n: \forall n,m:nat.(S O) \le n \to m \le n*m.
-intros.elim H.simplify.
-elim (plus_n_O ?).apply le_n.
-simplify.rewrite < sym_plus.apply le_plus_n.
-qed.
+ntheorem lt_times_n: ∀n,m:nat. O < n → m ≤ n*m.
+(* bello *)
+/2/; nqed.
-theorem le_times_to_le:
-\forall a,n,m. S O \le a \to a * n \le a * m \to n \le m.
-intro.
-apply nat_elim2;intros
- [apply le_O_n
- |apply False_ind.
- rewrite < times_n_O in H1.
- generalize in match H1.
- apply (lt_O_n_elim ? H).
- intros.
- simplify in H2.
- apply (le_to_not_lt ? ? H2).
- apply lt_O_S
- |apply le_S_S.
- apply H
- [assumption
- |rewrite < times_n_Sm in H2.
- rewrite < times_n_Sm in H2.
- apply (le_plus_to_le a).
- assumption
- ]
- ]
-qed.
+ntheorem le_times_to_le:
+∀a,n,m. O < a → a * n ≤ a * m → n ≤ m.
+#a; napply nat_elim2; nnormalize;
+ ##[//;
+ ##|#n; #H1; #H2; napply False_ind;
+ ngeneralize in match H2;
+ napply lt_to_not_le;
+ napply (transitive_le ? (S n));/2/;
+ ##|#n; #m; #H; #lta; #le;
+ napply le_S_S; napply H; /2/;
+ ##]
+nqed.
-theorem le_S_times_SSO: \forall n,m.O < m \to
-n \le m \to S n \le (S(S O))*m.
-intros.
-simplify.
-rewrite > plus_n_O.
-simplify.rewrite > plus_n_Sm.
-apply le_plus
- [assumption
- |rewrite < plus_n_O.
- assumption
- ]
-qed.
-(*0 and times *)
-theorem O_lt_const_to_le_times_const: \forall a,c:nat.
-O \lt c \to a \le a*c.
-intros.
-rewrite > (times_n_SO a) in \vdash (? % ?).
-apply le_times
-[ apply le_n
-| assumption
-]
-qed. *)
\ No newline at end of file
+ntheorem le_S_times_2: ∀n,m.O < m → n ≤ m → n < 2*m.
+#n; #m; #posm; #lenm; (* interessante *)
+nnormalize; napplyS (le_plus n); //; nqed.