ma la sintassi :> non lo supporta *)
mem_ok': ∀x,x':A. x=x' → (x ∈ pc) = (x' ∈ pc)
}.
+
+notation > "𝛀 ^ term 90 A" non associative with precedence 70
+for @{ 'qpowerclass $A }.
-ndefinition Full_set: ∀A. qpowerclass A.
+notation "Ω term 90 A \atop ≈" non associative with precedence 70
+for @{ 'qpowerclass $A }.
+
+interpretation "qpowerclass" 'qpowerclass a = (qpowerclass a).
+
+ndefinition Full_set: ∀A. 𝛀^A.
#A; @[ napply A | #x; #x'; #H; napply refl1]
nqed.
ncoercion Full_set: ∀A. qpowerclass A ≝ Full_set on A: setoid to qpowerclass ?.
-ndefinition qseteq: ∀A. equivalence_relation1 (qpowerclass A).
+ndefinition qseteq: ∀A. equivalence_relation1 (𝛀^A).
#A; @
[ napply (λS,S'. S = S')
| #S; napply (refl1 ? (seteq A))
nqed.
unification hint 0 ≔ A ⊢
- carr1 (mk_setoid1 (qpowerclass A) (eq1 (qpowerclass_setoid A)))
+ carr1 (mk_setoid1 (𝛀^A) (eq1 (qpowerclass_setoid A)))
≡ qpowerclass A.
ncoercion pc' : ∀A.∀x:qpowerclass_setoid A. Ω^A ≝ pc
(*-----------------------------------------------------------------*) ⊢
eq_rel ? (eq A) a a' ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) a a'.
-nlemma intersect_ok: ∀A. qpowerclass A → qpowerclass A → qpowerclass A.
+nlemma intersect_ok: ∀A. 𝛀^A → 𝛀^A → 𝛀^A.
#A; #S; #S'; @ (S ∩ S');
#a; #a'; #Ha; @; *; #H1; #H2; @
[##1,2: napply (. Ha^-1‡#); nassumption;
nqed.
interpretation "prop21 mem" 'prop2 l r = (prop21_mem ??????? l r).
+
+nlemma intersect_ok'':
+ ∀A. binary_morphism1 (qpowerclass_setoid A) (qpowerclass_setoid A) (qpowerclass_setoid A).
+ #A; @ (intersect_ok A); nlapply (prop21 … (intersect_ok' A)); #H;
+ #a; #a'; #b; #b'; #H1; #H2; napply H; nassumption;
+nqed.
+
+unification hint 1 ≔
+ A:?, B,C : 𝛀^A ⊢
+ fun21 …
+ (mk_binary_morphism1 …
+ (λS,S':qpowerclass_setoid A.S ∩ S')
+ (prop21 … (intersect_ok'' A))) B C
+ ≡ intersect ? B C.
+
+
nlemma test: ∀U.∀A,B:qpowerclass U. A ∩ B = A →
∀x,y. x=y → x ∈ A → y ∈ A ∩ B.
- #U; #A; #B; #H; #x; #y; #K; #K2; napply (. K^-1‡(H^-1‡#)); nassumption;
+ #U; #A; #B; #H; #x; #y; #K; #K2;
+ alias symbol "prop2" = "prop21".
+alias symbol "invert" = "setoid1 symmetry".
+napply (. (K^-1 ‡ (prop21 ??? (intersect_ok'' U) ???? H^-1 #))); STOP
+
+ napply (. K^-1‡(H^-1‡#)); nassumption;
nqed.
(*