intros.elim H.apply refl_eq.
qed.
+theorem eq_f': \forall A,B:Type.\forall f:A\to B.
+\forall x,y:A. x=y \to f y = f x.
+intros.elim H.apply refl_eq.
+qed.
+
+(*
coercion cic:/matita/logic/equality/sym_eq.con.
coercion cic:/matita/logic/equality/eq_f.con.
+*)
default "equality"
cic:/matita/logic/equality/eq.ind
cic:/matita/logic/equality/eq_ind.con
cic:/matita/logic/equality/eq_elim_r.con
cic:/matita/logic/equality/eq_f.con
- cic:/matita/logic/equality/eq_OF_eq.con. (* \x.sym (eq_f x) *)
+ cic:/matita/logic/equality/eq_f'.con. (* \x.sym (eq_f x) *)
theorem eq_f2: \forall A,B,C:Type.\forall f:A\to B \to C.
\forall x1,x2:A. \forall y1,y2:B.