| apply (trans1 s)]]
qed.
-(*coercion setoid2_of_setoid1.*)
+coercion setoid2_of_setoid1.
(*
definition Leibniz: Type → setoid.
qed.
alias symbol "eq" = "setoid1 eq".
-definition if': ∀A,B:CPROP. A = B → A → B.
- intros; apply (if ?? e); assumption.
+definition fi': ∀A,B:CPROP. A = B → B → A.
+ intros; apply (fi ?? e); assumption.
qed.
-notation ". r" with precedence 50 for @{'if $r}.
-interpretation "if" 'if r = (if' __ r).
+notation ". r" with precedence 50 for @{'fi $r}.
+interpretation "fi" 'fi r = (fi' __ r).
definition and_morphism: binary_morphism1 CPROP CPROP CPROP.
constructor 1;
(* bug grande come una casa?
Ma come fa a passare la quantificazione larga??? *)
-definition unary_morphism_setoid: setoid → setoid → setoid1.
+definition unary_morphism_setoid: setoid → setoid → setoid.
intros;
constructor 1;
[ apply (unary_morphism s s1);
interpretation "unary morphism" 'Imply a b = (arrows1 SET a b).
interpretation "SET eq" 'eq x y = (eq_rel _ (eq' _) x y).
-definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid2.
+definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid1.
intros;
constructor 1;
[ apply (unary_morphism1 s s1);
fi1: B → A
}.
-interpretation "logical iff" 'iff x y = (Iff x y).
-
notation "hvbox(a break ⇔ b)" right associative with precedence 25 for @{'iff1 $a $b}.
+interpretation "logical iff" 'iff x y = (Iff x y).
interpretation "logical iff type1" 'iff1 x y = (Iff1 x y).
inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝
ex_introT: ∀w:A. P w → exT A P.
-
-notation "\ll term 19 a, break term 19 b \gg"
-with precedence 90 for @{'dependent_pair $a $b}.
-interpretation "dependent pair" 'dependent_pair a b =
- (ex_introT _ _ a b).
interpretation "CProp exists" 'exists \eta.x = (exT _ x).
o-basic_pairs.ma o-algebra.ma
o-concrete_spaces.ma o-basic_pairs.ma o-saturations.ma
o-saturations.ma o-algebra.ma
-basic_pairs.ma relations.ma
saturations.ma relations.ma
+basic_pairs.ma relations.ma
o-algebra.ma categories.ma
o-formal_topologies.ma o-basic_topologies.ma
-categories.ma cprop_connectives.ma
formal_topologies.ma basic_topologies.ma
+categories.ma cprop_connectives.ma
saturations_to_o-saturations.ma o-saturations.ma relations_to_o-algebra.ma saturations.ma
-subsets.ma categories.ma
basic_topologies.ma relations.ma saturations.ma
+subsets.ma categories.ma
concrete_spaces.ma basic_pairs.ma
relations.ma subsets.ma
concrete_spaces_to_o-concrete_spaces.ma basic_pairs_to_o-basic_pairs.ma concrete_spaces.ma o-concrete_spaces.ma
o-basic_topologies.ma o-algebra.ma o-saturations.ma
-basic_pairs_to_o-basic_pairs.ma basic_pairs.ma o-basic_pairs.ma relations_to_o-algebra.ma
basic_topologies_to_o-basic_topologies.ma basic_topologies.ma o-basic_topologies.ma relations_to_o-algebra.ma
+basic_pairs_to_o-basic_pairs.ma basic_pairs.ma o-basic_pairs.ma relations_to_o-algebra.ma
cprop_connectives.ma logic/connectives.ma
relations_to_o-algebra.ma o-algebra.ma relations.ma
+o-basic_pairs_to_o-basic_topologies.ma concrete_spaces.ma o-basic_pairs.ma o-basic_topologies.ma
logic/connectives.ma
apply (λs1:carr A.λs3:carr C.∃s2:carr B. s1 ♮R12 s2 ∧ s2 ♮R23 s3);
| intros;
split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ]
- [ apply (. (e‡#)‡(#‡e1)); assumption
- | apply (. ((e \sup -1)‡#)‡(#‡(e1 \sup -1))); assumption]]
+ [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption
+ | apply (. (e‡#)‡(#‡e1)); assumption]]
| intros 8; split; intro H2; simplify in H2 ⊢ %;
cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3;
[ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ]
|6,7: intros 5; unfold composition; simplify; split; intro;
unfold setoid1_of_setoid in x y; simplify in x y;
[1,3: cases e (w H1); clear e; cases H1; clear H1; unfold;
- [ apply (. (e ^ -1 : eq1 ? w x)‡#); assumption
- | apply (. #‡(e : eq1 ? w y)); assumption]
+ [ apply (. (e : eq1 ? x w)‡#); assumption
+ | apply (. #‡(e : eq1 ? w y)^-1); assumption]
|2,4: exists; try assumption; split;
(* change required to avoid universe inconsistency *)
change in x with (carr o1); change in y with (carr o2);
[ intros; simplify; apply (.= (e‡#)); apply refl1
| intros; simplify; split; intros; simplify;
[ change with (∀x. x ♮a b → x ♮a' b'); intros;
- apply (. (#‡e1)); whd in e; apply (if ?? (e ??)); assumption
+ apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption
| change with (∀x. x ♮a' b' → x ♮a b); intros;
- apply (. (#‡e1\sup -1)); whd in e; apply (fi ?? (e ??));assumption]]
+ apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]]
qed.
(*
definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X.
intros; constructor 1;
[ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:carr U. x ♮r y ∧ x ∈ S });
intros; simplify; split; intro; cases e1; exists [1,3: apply w]
- [ apply (. (#‡e)‡#); assumption
- | apply (. (#‡e ^ -1)‡#); assumption]
+ [ apply (. (#‡e^-1)‡#); assumption
+ | apply (. (#‡e)‡#); assumption]
| intros; split; simplify; intros; cases e2; exists [1,3: apply w]
- [ apply (. #‡(#‡e1)); cases x; split; try assumption;
+ [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption;
apply (if ?? (e ??)); assumption
- | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption;
+ | apply (. #‡(#‡e1)); cases x; split; try assumption;
apply (if ?? (e ^ -1 ??)); assumption]]
qed.
intros; constructor 1;
[ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:carr U. x ♮r y → x ∈ S});
intros; simplify; split; intros; apply f;
- [ apply (. #‡e ^ -1); assumption
- | apply (. #‡e); assumption]
- | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)]
+ [ apply (. #‡e); assumption
+ | apply (. #‡e ^ -1); assumption]
+ | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )]
apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption]
qed.
intros; constructor 1;
[ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:carr V. x ♮r y → y ∈ S});
intros; simplify; split; intros; apply f;
- [ apply (. e ^ -1‡#); assumption
- | apply (. e‡#); assumption]
- | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)]
+ [ apply (. e ‡#); assumption
+ | apply (. e^ -1‡#); assumption]
+ | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)]
apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption]
qed.
[ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*)
exT ? (λy:carr V.x ♮r y ∧ y ∈ S) });
intros; simplify; split; intro; cases e1; exists [1,3: apply w]
- [ apply (. (e‡#)‡#); assumption
- | apply (. (e ^ -1‡#)‡#); assumption]
+ [ apply (. (e ^ -1‡#)‡#); assumption
+ | apply (. (e‡#)‡#); assumption]
| intros; split; simplify; intros; cases e2; exists [1,3: apply w]
- [ apply (. #‡(#‡e1)); cases x; split; try assumption;
+ [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption;
apply (if ?? (e ??)); assumption
- | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption;
+ | apply (. #‡(#‡e1)); cases x; split; try assumption;
apply (if ?? (e ^ -1 ??)); assumption]]
qed.
exists; [apply w] assumption]]
| intros; intros 2; cases (f (singleton ? a) ?);
[ exists; [apply a] [assumption | change with (a = a); apply refl1;]
- | change in x1 with (a = w); change with (mem A a q); apply (. (x1 \sup -1‡#));
+ | change in x1 with (a = w); change with (mem A a q); apply (. (x1‡#));
assumption]]
qed.
intros; split; unfold orelation_of_relation; simplify; intro; split; intro;
simplify; whd in o1 o2;
[ change with (a1 ∈ minus_star_image ?? t a → a1 ∈ minus_star_image ?? t' a);
- apply (. #‡(e‡#));
+ apply (. #‡(e^-1‡#));
| change with (a1 ∈ minus_star_image ?? t' a → a1 ∈ minus_star_image ?? t a);
- apply (. #‡(e ^ -1‡#));
- | change with (a1 ∈ minus_image ?? t a → a1 ∈ minus_image ?? t' a);
apply (. #‡(e‡#));
- | change with (a1 ∈ minus_image ?? t' a → a1 ∈ minus_image ?? t a);
+ | change with (a1 ∈ minus_image ?? t a → a1 ∈ minus_image ?? t' a);
apply (. #‡(e ^ -1‡#));
- | change with (a1 ∈ image ?? t a → a1 ∈ image ?? t' a);
+ | change with (a1 ∈ minus_image ?? t' a → a1 ∈ minus_image ?? t a);
apply (. #‡(e‡#));
- | change with (a1 ∈ image ?? t' a → a1 ∈ image ?? t a);
+ | change with (a1 ∈ image ?? t a → a1 ∈ image ?? t' a);
apply (. #‡(e ^ -1‡#));
- | change with (a1 ∈ star_image ?? t a → a1 ∈ star_image ?? t' a);
+ | change with (a1 ∈ image ?? t' a → a1 ∈ image ?? t a);
apply (. #‡(e‡#));
+ | change with (a1 ∈ star_image ?? t a → a1 ∈ star_image ?? t' a);
+ apply (. #‡(e ^ -1‡#));
| change with (a1 ∈ star_image ?? t' a → a1 ∈ star_image ?? t a);
- apply (. #‡(e ^ -1‡#)); ]
+ apply (. #‡(e‡#)); ]
qed.
lemma hint: ∀o1,o2:OA. Type_OF_setoid2 (arrows2 ? o1 o2) → carr2 (arrows2 OA o1 o2).
[ change with ((∀x. x ♮(id1 REL o1) a1→x∈a) → a1 ∈ a); intros;
apply (f a1); change with (a1 = a1); apply refl1;
| change with (a1 ∈ a → ∀x. x ♮(id1 REL o1) a1→x∈a); intros;
- change in f1 with (x = a1); apply (. f1 ^ -1‡#); apply f;
+ change in f1 with (x = a1); apply (. f1‡#); apply f;
| alias symbol "and" = "and_morphism".
change with ((∃y: carr o1.a1 ♮(id1 REL o1) y ∧ y∈a) → a1 ∈ a);
intro; cases e; clear e; cases x; clear x; change in f with (a1=w);
- apply (. f^-1‡#); apply f1;
+ apply (. f‡#); apply f1;
| change with (a1 ∈ a → ∃y: carr o1.a1 ♮(id1 REL o1) y ∧ y∈a);
intro; exists; [apply a1]; split; [ change with (a1=a1); apply refl1; | apply f]
| change with ((∃x: carr o1.x ♮(id1 REL o1) a1∧x∈a) → a1 ∈ a);
intro; cases e; clear e; cases x; clear x; change in f with (w=a1);
- apply (. f‡#); apply f1;
+ apply (. f^-1‡#); apply f1;
| change with (a1 ∈ a → ∃x: carr o1.x ♮(id1 REL o1) a1∧x∈a);
intro; exists; [apply a1]; split; [ change with (a1=a1); apply refl1; | apply f]
| change with ((∀y.a1 ♮(id1 REL o1) y→y∈a) → a1 ∈ a); intros;
apply (f a1); change with (a1 = a1); apply refl1;
| change with (a1 ∈ a → ∀y.a1 ♮(id1 REL o1) y→y∈a); intros;
- change in f1 with (a1 = y); apply (. f1‡#); apply f;]
+ change in f1 with (a1 = y); apply (. f1^-1‡#); apply f;]
qed.
lemma hint2: ∀S,T. carr2 (arrows2 OA S T) → Type_OF_setoid2 (arrows2 OA S T).
[ apply (λA:objs1 SET.λU,V:Ω \sup A.(exT2 ? (λx:A.?(*x*) ∈ U) (λx:A.?(*x*) ∈ V) : CProp0))
| intros;
constructor 1; intro; cases e2; exists; [1,4: apply w]
- [ apply (. #‡e); assumption
- | apply (. #‡e1); assumption
- | apply (. #‡(e \sup -1)); assumption;
- | apply (. #‡(e1 \sup -1)); assumption]]
+ [ apply (. #‡e^-1); assumption
+ | apply (. #‡e1^-1); assumption
+ | apply (. #‡e); assumption;
+ | apply (. #‡e1); assumption]]
qed.
interpretation "overlaps" 'overlaps U V = (fun21 ___ (overlaps _) U V).
intros; simplify; apply (.= (e‡#)‡(e‡#)); apply refl1;
| intros;
split; intros 2; simplify in f ⊢ %;
- [ apply (. (#‡e)‡(#‡e1)); assumption
- | apply (. (#‡(e \sup -1))‡(#‡(e1 \sup -1))); assumption]]
+ [ apply (. (#‡e^-1)‡(#‡e1^-1)); assumption
+ | apply (. (#‡e)‡(#‡e1)); assumption]]
qed.
interpretation "intersects" 'intersects U V = (fun21 ___ (intersects _) U V).
intros; simplify; apply (.= (e‡#)‡(e‡#)); apply refl1
| intros;
split; intros 2; simplify in f ⊢ %;
- [ apply (. (#‡e)‡(#‡e1)); assumption
- | apply (. (#‡(e \sup -1))‡(#‡(e1 \sup -1))); assumption]]
+ [ apply (. (#‡e^-1)‡(#‡e1^-1)); assumption
+ | apply (. (#‡e)‡(#‡e1)); assumption]]
qed.
interpretation "union" 'union U V = (fun21 ___ (union _) U V).
intros; constructor 1;
[ intro; whd; whd in I;
apply ({x | ∀i:I. x ∈ t i});
- simplify; intros; split; intros; [ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ]
+ simplify; intros; split; intros; [ apply (. (e^-1‡#)); | apply (. e‡#); ]
apply f;
| intros; split; intros 2; simplify in f ⊢ %; intro;
- [ apply (. (#‡(e i))); apply f;
- | apply (. (#‡(e i)\sup -1)); apply f]]
+ [ apply (. (#‡(e i)^-1)); apply f;
+ | apply (. (#‡e i)); apply f]]
qed.
definition big_union:
[ intro; whd; whd in A; whd in I;
apply ({x | ∃i:carr I. x ∈ t i });
simplify; intros; split; intros; cases e1; clear e1; exists; [1,3:apply w]
- [ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ]
+ [ apply (. (e^-1‡#)); | apply (. (e‡#)); ]
apply x;
| intros; split; intros 2; simplify in f ⊢ %; cases f; clear f; exists; [1,3:apply w]
- [ apply (. (#‡(e w))); apply x;
- | apply (. (#‡(e w)\sup -1)); apply x]]
+ [ apply (. (#‡(e w)^-1)); apply x;
+ | apply (. (#‡e w)); apply x]]
qed.