ntheorem not_lt_to_le: ∀n,m:nat. n ≮ m → m ≤ n.
#n; #m; #Hnlt; napply lt_S_to_le;
-(* something strange here: /2/ fails *)
+(* something strange here: /2/ fails:
+ we need an extra depths for unfolding not *)
napply not_le_to_lt; napply Hnlt; nqed.
ntheorem le_to_not_lt: ∀n,m:nat. n ≤ m → m ≮ n.
qed.
*)
-(******************* monotonicity ******************************)
+(*********************** monotonicity ***************************)
ntheorem monotonic_le_plus_r:
∀n:nat.monotonic nat le (λm.n + m).
#n; #a; #b; nelim n; nnormalize; //;
#m; #H; #leab;napply le_S_S; /2/; nqed.
+(*
ntheorem le_plus_r: ∀p,n,m:nat. n ≤ m → p + n ≤ p + m
-≝ monotonic_le_plus_r.
+≝ monotonic_le_plus_r. *)
ntheorem monotonic_le_plus_l:
∀m:nat.monotonic nat le (λn.n + m).
/2/; nqed.
+(*
ntheorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p
-\def monotonic_le_plus_l.
+\def monotonic_le_plus_l. *)
ntheorem le_plus: ∀n1,n2,m1,m2:nat. n1 ≤ n2 \to m1 ≤ m2
→ n1 + m1 ≤ n2 + m2.
ntheorem le_plus_to_le: ∀a,n,m. a + n ≤ a + m → n ≤ m.
#a; nelim a; /3/; nqed.
+ntheorem le_plus_to_le_r: ∀a,n,m. n + a ≤ m +a → n ≤ m.
+/2/; nqed.
+
(* times *)
ntheorem monotonic_le_times_r:
∀n:nat.monotonic nat le (λm. n * m).
-#n; #x; #y; #lexy; nelim n; nnormalize;//;
-#a; #lea; napply le_plus;//; (* lentissimo /2/ *)
+#n; #x; #y; #lexy; nelim n; nnormalize;//;(* lento /2/;*)
+#a; #lea; napply le_plus; //;
nqed.
(*
ntheorem le_times: ∀n1,n2,m1,m2:nat.
n1 ≤ n2 → m1 ≤ m2 → n1*m1 ≤ n2*m2.
#n1; #n2; #m1; #m2; #len; #lem;
-napply transitive_le; (* too slow *)
+napply transitive_le; (* /2/ slow *)
##[ ##| napply monotonic_le_times_l;//;
##| napply monotonic_le_times_r;//;
##]
ntheorem le_S_times_2: ∀n,m.O < m → n ≤ m → n < 2*m.
#n; #m; #posm; #lenm; (* interessante *)
nnormalize; napplyS (le_plus n); //; nqed.
+
+(************************** minus ******************************)
+
+nlet rec minus n m ≝
+ match n with
+ [ O ⇒ O
+ | S p ⇒
+ match m with
+ [ O ⇒ S p
+ | S q ⇒ minus p q ]].
+
+interpretation "natural minus" 'minus x y = (minus x y).
+
+ntheorem minus_S_S: ∀n,m:nat.S n - S m = n -m.
+//; nqed.
+
+ntheorem minus_O_n: ∀n:nat.O=O-n.
+#n; ncases n; //; nqed.
+
+ntheorem minus_n_O: ∀n:nat.n=n-O.
+#n; ncases n; //; nqed.
+
+ntheorem minus_n_n: ∀n:nat.O=n-n.
+#n; nelim n; //; nqed.
+
+ntheorem minus_Sn_n: ∀n:nat. S O = (S n)-n.
+#n; nelim n; //; nqed.
+
+ntheorem minus_Sn_m: ∀m,n:nat. m ≤ n → S n -m = S (n-m).
+(* qualcosa da capire qui
+#n; #m; #lenm; nelim lenm; napplyS refl_eq. *)
+napply nat_elim2;
+ ##[//
+ ##|#n; #abs; napply False_ind;/2/;
+ ##|/3/;
+ ##]
+nqed.
+
+ntheorem eq_minus_S_pred: ∀n,m. n - (S m) = pred(n -m).
+napply nat_elim2; //; nqed.
+
+ntheorem plus_minus:
+∀m,n,p:nat. m ≤ n → (n-m)+p = (n+p)-m.
+napply nat_elim2;
+ ##[//
+ ##|#n; #p; #abs; napply False_ind;/2/;
+ ##|nnormalize;/3/;
+ ##]
+nqed.
+
+ntheorem minus_plus_m_m: ∀n,m:nat.n = (n+m)-m.
+#n; #m; napplyS (plus_minus m m n); //; nqed.
+
+ntheorem plus_minus_m_m: ∀n,m:nat.
+m \leq n \to n = (n-m)+m.
+#n; #m; #lemn; napplyS symmetric_eq;
+napplyS (plus_minus m n m); //; nqed.
+
+ntheorem le_plus_minus_m_m: ∀n,m:nat. n ≤ (n-m)+m.
+#n; nelim n;
+ ##[//
+ ##|#a; #Hind; #m; ncases m;/2/;
+ ##]
+nqed.
+
+ntheorem minus_to_plus :∀n,m,p:nat.
+ m ≤ n → n-m = p → n = m+p.
+#n; #m; #p; #lemn; #eqp; napplyS plus_minus_m_m; //;
+nqed.
+
+ntheorem plus_to_minus :∀n,m,p:nat.n = m+p → n-m = p.
+(* /4/ done in 43.5 *)
+#n; #m; #p; #eqp;
+napply symmetric_eq;
+napplyS (minus_plus_m_m p m);
+nqed.
+
+ntheorem minus_pred_pred : ∀n,m:nat. O < n → O < m →
+pred n - pred m = n - m.
+#n; #m; #posn; #posm;
+napply (lt_O_n_elim n posn);
+napply (lt_O_n_elim m posm);//.
+nqed.
+
+(*
+theorem eq_minus_n_m_O: \forall n,m:nat.
+n \leq m \to n-m = O.
+intros 2.
+apply (nat_elim2 (\lambda n,m.n \leq m \to n-m = O)).
+intros.simplify.reflexivity.
+intros.apply False_ind.
+apply not_le_Sn_O;
+[2: apply H | skip].
+intros.
+simplify.apply H.apply le_S_S_to_le. apply H1.
+qed.
+
+theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n.
+intros.elim H.elim (minus_Sn_n n).apply le_n.
+rewrite > minus_Sn_m.
+apply le_S.assumption.
+apply lt_to_le.assumption.
+qed.
+
+theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)).
+intros.
+apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))).
+intro.elim n1.simplify.apply le_n_Sn.
+simplify.rewrite < minus_n_O.apply le_n.
+intros.simplify.apply le_n_Sn.
+intros.simplify.apply H.
+qed.
+
+theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p.
+intros 3.intro.
+(* autobatch *)
+(* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *)
+apply (trans_le (m-n) (S (m-(S n))) p).
+apply minus_le_S_minus_S.
+assumption.
+qed.
+
+theorem le_minus_m: \forall n,m:nat. n-m \leq n.
+intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)).
+intros.rewrite < minus_n_O.apply le_n.
+intros.simplify.apply le_n.
+intros.simplify.apply le_S.assumption.
+qed.
+
+theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n.
+intros.apply (lt_O_n_elim n H).intro.
+apply (lt_O_n_elim m H1).intro.
+simplify.unfold lt.apply le_S_S.apply le_minus_m.
+qed.
+
+theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m.
+intros 2.
+apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)).
+intros.apply le_O_n.
+simplify.intros. assumption.
+simplify.intros.apply le_S_S.apply H.assumption.
+qed.
+*)
+
+(* monotonicity and galois *)
+
+ntheorem monotonic_le_minus_l:
+∀p,q,n:nat. q ≤ p → q-n ≤ p-n.
+napply nat_elim2; #p; #q;
+ ##[#lePO; napply (le_n_O_elim ? lePO);//;
+ ##|//;
+ ##|#Hind; #n; ncases n;
+ ##[//;
+ ##|#a; #leSS; napply Hind; /2/;
+ ##]
+ ##]
+nqed.
+
+ntheorem le_minus_to_plus: ∀n,m,p. n-m ≤ p → n≤ p+m.
+#n; #m; #p; #lep;
+napply transitive_le;
+ ##[##|napply le_plus_minus_m_m
+ ##|napply monotonic_le_plus_l;//;
+ ##]
+nqed.
+
+ntheorem le_plus_to_minus: ∀n,m,p. n ≤ p+m → n-m ≤ p.
+#n; #m; #p; #lep;
+(* bello *)
+napplyS monotonic_le_minus_l;//;
+nqed.
+
+ntheorem monotonic_le_minus_r:
+∀p,q,n:nat. q ≤ p → n-p ≤ n-q.
+#p; #q; #n; #lepq;
+napply le_plus_to_minus;
+napply (transitive_le ??? (le_plus_minus_m_m ? q));/2/;
+nqed.