+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-
-
-include "nat/nat.ma".
-
-axiom A : Type.
-
-inductive vec : nat -> Type :=
- | vnil : vec O
- | vcons : ∀x:A.∀n:nat. vec n -> vec (S n).
-
-definition f := λx,n.λv:vec n.vcons x n v.
-definition g := λn,x.λv:vec n.vcons x n v.
-
-include "logic/equality.ma".
-
-(* definition xx := f = g. *)
-theorem xx1 : ∀n.∀x1:vec n.f ? ? x1 = g ? ? x1.