]> matita.cs.unibo.it Git - helm.git/commitdiff
files with newest objects (to be included in the respective developments)
authorFerruccio Guidi <ferruccio.guidi@unibo.it>
Thu, 12 Oct 2006 21:14:23 +0000 (21:14 +0000)
committerFerruccio Guidi <ferruccio.guidi@unibo.it>
Thu, 12 Oct 2006 21:14:23 +0000 (21:14 +0000)
matita/contribs/LAMBDA-TYPES/Level-1/Base.ma [new file with mode: 0644]
matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta.ma [new file with mode: 0644]

diff --git a/matita/contribs/LAMBDA-TYPES/Level-1/Base.ma b/matita/contribs/LAMBDA-TYPES/Level-1/Base.ma
new file mode 100644 (file)
index 0000000..09d3ada
--- /dev/null
@@ -0,0 +1,20 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/Base".
+
+include "Base/theory.ma".
+
diff --git a/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta.ma b/matita/contribs/LAMBDA-TYPES/Level-1/LambdaDelta.ma
new file mode 100644 (file)
index 0000000..e38a5df
--- /dev/null
@@ -0,0 +1,1817 @@
+(**************************************************************************)
+(*       ___                                                              *)
+(*      ||M||                                                             *)
+(*      ||A||       A project by Andrea Asperti                           *)
+(*      ||T||                                                             *)
+(*      ||I||       Developers:                                           *)
+(*      ||T||         The HELM team.                                      *)
+(*      ||A||         http://helm.cs.unibo.it                             *)
+(*      \   /                                                             *)
+(*       \ /        This file is distributed under the terms of the       *)
+(*        v         GNU General Public License Version 2                  *)
+(*                                                                        *)
+(**************************************************************************)
+
+(* This file was automatically generated: do not edit *********************)
+
+set "baseuri" "cic:/matita/LAMBDA-TYPES/Level-1/LambdaDelta".
+
+include "LambdaDelta/theory.ma".
+
+definition TApp:
+ TList \to (T \to TList)
+\def
+ let rec TApp (ts: TList) on ts: (T \to TList) \def (\lambda (v: T).(match ts 
+with [TNil \Rightarrow (TCons v TNil) | (TCons t ts0) \Rightarrow (TCons t 
+(TApp ts0 v))])) in TApp.
+
+definition tslen:
+ TList \to nat
+\def
+ let rec tslen (ts: TList) on ts: nat \def (match ts with [TNil \Rightarrow O 
+| (TCons _ ts0) \Rightarrow (S (tslen ts0))]) in tslen.
+
+definition tslt:
+ TList \to (TList \to Prop)
+\def
+ \lambda (ts1: TList).(\lambda (ts2: TList).(lt (tslen ts1) (tslen ts2))).
+
+theorem tslt_wf__q_ind:
+ \forall (P: ((TList \to Prop))).(((\forall (n: nat).((\lambda (P0: ((TList 
+\to Prop))).(\lambda (n0: nat).(\forall (ts: TList).((eq nat (tslen ts) n0) 
+\to (P0 ts))))) P n))) \to (\forall (ts: TList).(P ts)))
+\def
+ let Q \def (\lambda (P: ((TList \to Prop))).(\lambda (n: nat).(\forall (ts: 
+TList).((eq nat (tslen ts) n) \to (P ts))))) in (\lambda (P: ((TList \to 
+Prop))).(\lambda (H: ((\forall (n: nat).(\forall (ts: TList).((eq nat (tslen 
+ts) n) \to (P ts)))))).(\lambda (ts: TList).(H (tslen ts) ts (refl_equal nat 
+(tslen ts)))))).
+
+theorem tslt_wf_ind:
+ \forall (P: ((TList \to Prop))).(((\forall (ts2: TList).(((\forall (ts1: 
+TList).((tslt ts1 ts2) \to (P ts1)))) \to (P ts2)))) \to (\forall (ts: 
+TList).(P ts)))
+\def
+ let Q \def (\lambda (P: ((TList \to Prop))).(\lambda (n: nat).(\forall (ts: 
+TList).((eq nat (tslen ts) n) \to (P ts))))) in (\lambda (P: ((TList \to 
+Prop))).(\lambda (H: ((\forall (ts2: TList).(((\forall (ts1: TList).((lt 
+(tslen ts1) (tslen ts2)) \to (P ts1)))) \to (P ts2))))).(\lambda (ts: 
+TList).(tslt_wf__q_ind (\lambda (t: TList).(P t)) (\lambda (n: 
+nat).(lt_wf_ind n (Q (\lambda (t: TList).(P t))) (\lambda (n0: nat).(\lambda 
+(H0: ((\forall (m: nat).((lt m n0) \to (Q (\lambda (t: TList).(P t)) 
+m))))).(\lambda (ts0: TList).(\lambda (H1: (eq nat (tslen ts0) n0)).(let H2 
+\def (eq_ind_r nat n0 (\lambda (n1: nat).(\forall (m: nat).((lt m n1) \to 
+(\forall (ts1: TList).((eq nat (tslen ts1) m) \to (P ts1)))))) H0 (tslen ts0) 
+H1) in (H ts0 (\lambda (ts1: TList).(\lambda (H3: (lt (tslen ts1) (tslen 
+ts0))).(H2 (tslen ts1) H3 ts1 (refl_equal nat (tslen ts1))))))))))))) ts)))).
+
+theorem theads_tapp:
+ \forall (k: K).(\forall (vs: TList).(\forall (v: T).(\forall (t: T).(eq T 
+(THeads k (TApp vs v) t) (THeads k vs (THead k v t))))))
+\def
+ \lambda (k: K).(\lambda (vs: TList).(TList_ind (\lambda (t: TList).(\forall 
+(v: T).(\forall (t0: T).(eq T (THeads k (TApp t v) t0) (THeads k t (THead k v 
+t0)))))) (\lambda (v: T).(\lambda (t: T).(refl_equal T (THead k v t)))) 
+(\lambda (t: T).(\lambda (t0: TList).(\lambda (H: ((\forall (v: T).(\forall 
+(t1: T).(eq T (THeads k (TApp t0 v) t1) (THeads k t0 (THead k v 
+t1))))))).(\lambda (v: T).(\lambda (t1: T).(eq_ind_r T (THeads k t0 (THead k 
+v t1)) (\lambda (t2: T).(eq T (THead k t t2) (THead k t (THeads k t0 (THead k 
+v t1))))) (refl_equal T (THead k t (THeads k t0 (THead k v t1)))) (THeads k 
+(TApp t0 v) t1) (H v t1))))))) vs)).
+
+theorem tcons_tapp_ex:
+ \forall (ts1: TList).(\forall (t1: T).(ex2_2 TList T (\lambda (ts2: 
+TList).(\lambda (t2: T).(eq TList (TCons t1 ts1) (TApp ts2 t2)))) (\lambda 
+(ts2: TList).(\lambda (_: T).(eq nat (tslen ts1) (tslen ts2))))))
+\def
+ \lambda (ts1: TList).(TList_ind (\lambda (t: TList).(\forall (t1: T).(ex2_2 
+TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons t1 t) (TApp 
+ts2 t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (tslen t) (tslen 
+ts2))))))) (\lambda (t1: T).(ex2_2_intro TList T (\lambda (ts2: 
+TList).(\lambda (t2: T).(eq TList (TCons t1 TNil) (TApp ts2 t2)))) (\lambda 
+(ts2: TList).(\lambda (_: T).(eq nat O (tslen ts2)))) TNil t1 (refl_equal 
+TList (TApp TNil t1)) (refl_equal nat (tslen TNil)))) (\lambda (t: 
+T).(\lambda (t0: TList).(\lambda (H: ((\forall (t1: T).(ex2_2 TList T 
+(\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons t1 t0) (TApp ts2 
+t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (tslen t0) (tslen 
+ts2)))))))).(\lambda (t1: T).(let H_x \def (H t) in (let H0 \def H_x in 
+(ex2_2_ind TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons t 
+t0) (TApp ts2 t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (tslen t0) 
+(tslen ts2)))) (ex2_2 TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq 
+TList (TCons t1 (TCons t t0)) (TApp ts2 t2)))) (\lambda (ts2: TList).(\lambda 
+(_: T).(eq nat (S (tslen t0)) (tslen ts2))))) (\lambda (x0: TList).(\lambda 
+(x1: T).(\lambda (H1: (eq TList (TCons t t0) (TApp x0 x1))).(\lambda (H2: (eq 
+nat (tslen t0) (tslen x0))).(eq_ind_r TList (TApp x0 x1) (\lambda (t2: 
+TList).(ex2_2 TList T (\lambda (ts2: TList).(\lambda (t3: T).(eq TList (TCons 
+t1 t2) (TApp ts2 t3)))) (\lambda (ts2: TList).(\lambda (_: T).(eq nat (S 
+(tslen t0)) (tslen ts2)))))) (eq_ind_r nat (tslen x0) (\lambda (n: 
+nat).(ex2_2 TList T (\lambda (ts2: TList).(\lambda (t2: T).(eq TList (TCons 
+t1 (TApp x0 x1)) (TApp ts2 t2)))) (\lambda (ts2: TList).(\lambda (_: T).(eq 
+nat (S n) (tslen ts2)))))) (ex2_2_intro TList T (\lambda (ts2: 
+TList).(\lambda (t2: T).(eq TList (TCons t1 (TApp x0 x1)) (TApp ts2 t2)))) 
+(\lambda (ts2: TList).(\lambda (_: T).(eq nat (S (tslen x0)) (tslen ts2)))) 
+(TCons t1 x0) x1 (refl_equal TList (TApp (TCons t1 x0) x1)) (refl_equal nat 
+(tslen (TCons t1 x0)))) (tslen t0) H2) (TCons t t0) H1))))) H0))))))) ts1).
+
+theorem tlist_ind_rew:
+ \forall (P: ((TList \to Prop))).((P TNil) \to (((\forall (ts: 
+TList).(\forall (t: T).((P ts) \to (P (TApp ts t)))))) \to (\forall (ts: 
+TList).(P ts))))
+\def
+ \lambda (P: ((TList \to Prop))).(\lambda (H: (P TNil)).(\lambda (H0: 
+((\forall (ts: TList).(\forall (t: T).((P ts) \to (P (TApp ts 
+t))))))).(\lambda (ts: TList).(tslt_wf_ind (\lambda (t: TList).(P t)) 
+(\lambda (ts2: TList).(match ts2 in TList return (\lambda (t: 
+TList).(((\forall (ts1: TList).((tslt ts1 t) \to (P ts1)))) \to (P t))) with 
+[TNil \Rightarrow (\lambda (_: ((\forall (ts1: TList).((tslt ts1 TNil) \to (P 
+ts1))))).H) | (TCons t t0) \Rightarrow (\lambda (H1: ((\forall (ts1: 
+TList).((tslt ts1 (TCons t t0)) \to (P ts1))))).(let H_x \def (tcons_tapp_ex 
+t0 t) in (let H2 \def H_x in (ex2_2_ind TList T (\lambda (ts3: 
+TList).(\lambda (t2: T).(eq TList (TCons t t0) (TApp ts3 t2)))) (\lambda 
+(ts3: TList).(\lambda (_: T).(eq nat (tslen t0) (tslen ts3)))) (P (TCons t 
+t0)) (\lambda (x0: TList).(\lambda (x1: T).(\lambda (H3: (eq TList (TCons t 
+t0) (TApp x0 x1))).(\lambda (H4: (eq nat (tslen t0) (tslen x0))).(eq_ind_r 
+TList (TApp x0 x1) (\lambda (t1: TList).(P t1)) (H0 x0 x1 (H1 x0 (eq_ind nat 
+(tslen t0) (\lambda (n: nat).(lt n (tslen (TCons t t0)))) (le_n (tslen (TCons 
+t t0))) (tslen x0) H4))) (TCons t t0) H3))))) H2))))])) ts)))).
+
+theorem iso_gen_sort:
+ \forall (u2: T).(\forall (n1: nat).((iso (TSort n1) u2) \to (ex nat (\lambda 
+(n2: nat).(eq T u2 (TSort n2))))))
+\def
+ \lambda (u2: T).(\lambda (n1: nat).(\lambda (H: (iso (TSort n1) u2)).(let H0 
+\def (match H in iso return (\lambda (t: T).(\lambda (t0: T).(\lambda (_: 
+(iso t t0)).((eq T t (TSort n1)) \to ((eq T t0 u2) \to (ex nat (\lambda (n2: 
+nat).(eq T u2 (TSort n2))))))))) with [(iso_sort n0 n2) \Rightarrow (\lambda 
+(H0: (eq T (TSort n0) (TSort n1))).(\lambda (H1: (eq T (TSort n2) u2)).((let 
+H2 \def (f_equal T nat (\lambda (e: T).(match e in T return (\lambda (_: 
+T).nat) with [(TSort n) \Rightarrow n | (TLRef _) \Rightarrow n0 | (THead _ _ 
+_) \Rightarrow n0])) (TSort n0) (TSort n1) H0) in (eq_ind nat n1 (\lambda (_: 
+nat).((eq T (TSort n2) u2) \to (ex nat (\lambda (n3: nat).(eq T u2 (TSort 
+n3)))))) (\lambda (H3: (eq T (TSort n2) u2)).(eq_ind T (TSort n2) (\lambda 
+(t: T).(ex nat (\lambda (n3: nat).(eq T t (TSort n3))))) (ex_intro nat 
+(\lambda (n3: nat).(eq T (TSort n2) (TSort n3))) n2 (refl_equal T (TSort 
+n2))) u2 H3)) n0 (sym_eq nat n0 n1 H2))) H1))) | (iso_lref i1 i2) \Rightarrow 
+(\lambda (H0: (eq T (TLRef i1) (TSort n1))).(\lambda (H1: (eq T (TLRef i2) 
+u2)).((let H2 \def (eq_ind T (TLRef i1) (\lambda (e: T).(match e in T return 
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) 
+\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (TSort n1) H0) in 
+(False_ind ((eq T (TLRef i2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 
+(TSort n2))))) H2)) H1))) | (iso_head v1 v2 t1 t2 k) \Rightarrow (\lambda 
+(H0: (eq T (THead k v1 t1) (TSort n1))).(\lambda (H1: (eq T (THead k v2 t2) 
+u2)).((let H2 \def (eq_ind T (THead k v1 t1) (\lambda (e: T).(match e in T 
+return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) 
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TSort n1) H0) in 
+(False_ind ((eq T (THead k v2 t2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 
+(TSort n2))))) H2)) H1)))]) in (H0 (refl_equal T (TSort n1)) (refl_equal T 
+u2))))).
+
+theorem iso_gen_lref:
+ \forall (u2: T).(\forall (n1: nat).((iso (TLRef n1) u2) \to (ex nat (\lambda 
+(n2: nat).(eq T u2 (TLRef n2))))))
+\def
+ \lambda (u2: T).(\lambda (n1: nat).(\lambda (H: (iso (TLRef n1) u2)).(let H0 
+\def (match H in iso return (\lambda (t: T).(\lambda (t0: T).(\lambda (_: 
+(iso t t0)).((eq T t (TLRef n1)) \to ((eq T t0 u2) \to (ex nat (\lambda (n2: 
+nat).(eq T u2 (TLRef n2))))))))) with [(iso_sort n0 n2) \Rightarrow (\lambda 
+(H0: (eq T (TSort n0) (TLRef n1))).(\lambda (H1: (eq T (TSort n2) u2)).((let 
+H2 \def (eq_ind T (TSort n0) (\lambda (e: T).(match e in T return (\lambda 
+(_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False | 
+(THead _ _ _) \Rightarrow False])) I (TLRef n1) H0) in (False_ind ((eq T 
+(TSort n2) u2) \to (ex nat (\lambda (n3: nat).(eq T u2 (TLRef n3))))) H2)) 
+H1))) | (iso_lref i1 i2) \Rightarrow (\lambda (H0: (eq T (TLRef i1) (TLRef 
+n1))).(\lambda (H1: (eq T (TLRef i2) u2)).((let H2 \def (f_equal T nat 
+(\lambda (e: T).(match e in T return (\lambda (_: T).nat) with [(TSort _) 
+\Rightarrow i1 | (TLRef n) \Rightarrow n | (THead _ _ _) \Rightarrow i1])) 
+(TLRef i1) (TLRef n1) H0) in (eq_ind nat n1 (\lambda (_: nat).((eq T (TLRef 
+i2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 (TLRef n2)))))) (\lambda (H3: 
+(eq T (TLRef i2) u2)).(eq_ind T (TLRef i2) (\lambda (t: T).(ex nat (\lambda 
+(n2: nat).(eq T t (TLRef n2))))) (ex_intro nat (\lambda (n2: nat).(eq T 
+(TLRef i2) (TLRef n2))) i2 (refl_equal T (TLRef i2))) u2 H3)) i1 (sym_eq nat 
+i1 n1 H2))) H1))) | (iso_head v1 v2 t1 t2 k) \Rightarrow (\lambda (H0: (eq T 
+(THead k v1 t1) (TLRef n1))).(\lambda (H1: (eq T (THead k v2 t2) u2)).((let 
+H2 \def (eq_ind T (THead k v1 t1) (\lambda (e: T).(match e in T return 
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) 
+\Rightarrow False | (THead _ _ _) \Rightarrow True])) I (TLRef n1) H0) in 
+(False_ind ((eq T (THead k v2 t2) u2) \to (ex nat (\lambda (n2: nat).(eq T u2 
+(TLRef n2))))) H2)) H1)))]) in (H0 (refl_equal T (TLRef n1)) (refl_equal T 
+u2))))).
+
+theorem iso_gen_head:
+ \forall (k: K).(\forall (v1: T).(\forall (t1: T).(\forall (u2: T).((iso 
+(THead k v1 t1) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 
+(THead k v2 t2)))))))))
+\def
+ \lambda (k: K).(\lambda (v1: T).(\lambda (t1: T).(\lambda (u2: T).(\lambda 
+(H: (iso (THead k v1 t1) u2)).(let H0 \def (match H in iso return (\lambda 
+(t: T).(\lambda (t0: T).(\lambda (_: (iso t t0)).((eq T t (THead k v1 t1)) 
+\to ((eq T t0 u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 
+(THead k v2 t2)))))))))) with [(iso_sort n1 n2) \Rightarrow (\lambda (H0: (eq 
+T (TSort n1) (THead k v1 t1))).(\lambda (H1: (eq T (TSort n2) u2)).((let H2 
+\def (eq_ind T (TSort n1) (\lambda (e: T).(match e in T return (\lambda (_: 
+T).Prop) with [(TSort _) \Rightarrow True | (TLRef _) \Rightarrow False | 
+(THead _ _ _) \Rightarrow False])) I (THead k v1 t1) H0) in (False_ind ((eq T 
+(TSort n2) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 
+(THead k v2 t2)))))) H2)) H1))) | (iso_lref i1 i2) \Rightarrow (\lambda (H0: 
+(eq T (TLRef i1) (THead k v1 t1))).(\lambda (H1: (eq T (TLRef i2) u2)).((let 
+H2 \def (eq_ind T (TLRef i1) (\lambda (e: T).(match e in T return (\lambda 
+(_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow True | 
+(THead _ _ _) \Rightarrow False])) I (THead k v1 t1) H0) in (False_ind ((eq T 
+(TLRef i2) u2) \to (ex_2 T T (\lambda (v2: T).(\lambda (t2: T).(eq T u2 
+(THead k v2 t2)))))) H2)) H1))) | (iso_head v0 v2 t0 t2 k0) \Rightarrow 
+(\lambda (H0: (eq T (THead k0 v0 t0) (THead k v1 t1))).(\lambda (H1: (eq T 
+(THead k0 v2 t2) u2)).((let H2 \def (f_equal T T (\lambda (e: T).(match e in 
+T return (\lambda (_: T).T) with [(TSort _) \Rightarrow t0 | (TLRef _) 
+\Rightarrow t0 | (THead _ _ t) \Rightarrow t])) (THead k0 v0 t0) (THead k v1 
+t1) H0) in ((let H3 \def (f_equal T T (\lambda (e: T).(match e in T return 
+(\lambda (_: T).T) with [(TSort _) \Rightarrow v0 | (TLRef _) \Rightarrow v0 
+| (THead _ t _) \Rightarrow t])) (THead k0 v0 t0) (THead k v1 t1) H0) in 
+((let H4 \def (f_equal T K (\lambda (e: T).(match e in T return (\lambda (_: 
+T).K) with [(TSort _) \Rightarrow k0 | (TLRef _) \Rightarrow k0 | (THead k1 _ 
+_) \Rightarrow k1])) (THead k0 v0 t0) (THead k v1 t1) H0) in (eq_ind K k 
+(\lambda (k1: K).((eq T v0 v1) \to ((eq T t0 t1) \to ((eq T (THead k1 v2 t2) 
+u2) \to (ex_2 T T (\lambda (v3: T).(\lambda (t3: T).(eq T u2 (THead k v3 
+t3))))))))) (\lambda (H5: (eq T v0 v1)).(eq_ind T v1 (\lambda (_: T).((eq T 
+t0 t1) \to ((eq T (THead k v2 t2) u2) \to (ex_2 T T (\lambda (v3: T).(\lambda 
+(t3: T).(eq T u2 (THead k v3 t3)))))))) (\lambda (H6: (eq T t0 t1)).(eq_ind T 
+t1 (\lambda (_: T).((eq T (THead k v2 t2) u2) \to (ex_2 T T (\lambda (v3: 
+T).(\lambda (t3: T).(eq T u2 (THead k v3 t3))))))) (\lambda (H7: (eq T (THead 
+k v2 t2) u2)).(eq_ind T (THead k v2 t2) (\lambda (t: T).(ex_2 T T (\lambda 
+(v3: T).(\lambda (t3: T).(eq T t (THead k v3 t3)))))) (ex_2_intro T T 
+(\lambda (v3: T).(\lambda (t3: T).(eq T (THead k v2 t2) (THead k v3 t3)))) v2 
+t2 (refl_equal T (THead k v2 t2))) u2 H7)) t0 (sym_eq T t0 t1 H6))) v0 
+(sym_eq T v0 v1 H5))) k0 (sym_eq K k0 k H4))) H3)) H2)) H1)))]) in (H0 
+(refl_equal T (THead k v1 t1)) (refl_equal T u2))))))).
+
+theorem iso_refl:
+ \forall (t: T).(iso t t)
+\def
+ \lambda (t: T).(T_ind (\lambda (t0: T).(iso t0 t0)) (\lambda (n: 
+nat).(iso_sort n n)) (\lambda (n: nat).(iso_lref n n)) (\lambda (k: 
+K).(\lambda (t0: T).(\lambda (_: (iso t0 t0)).(\lambda (t1: T).(\lambda (_: 
+(iso t1 t1)).(iso_head t0 t0 t1 t1 k)))))) t).
+
+theorem lifts_tapp:
+ \forall (h: nat).(\forall (d: nat).(\forall (v: T).(\forall (vs: TList).(eq 
+TList (lifts h d (TApp vs v)) (TApp (lifts h d vs) (lift h d v))))))
+\def
+ \lambda (h: nat).(\lambda (d: nat).(\lambda (v: T).(\lambda (vs: 
+TList).(TList_ind (\lambda (t: TList).(eq TList (lifts h d (TApp t v)) (TApp 
+(lifts h d t) (lift h d v)))) (refl_equal TList (TCons (lift h d v) TNil)) 
+(\lambda (t: T).(\lambda (t0: TList).(\lambda (H: (eq TList (lifts h d (TApp 
+t0 v)) (TApp (lifts h d t0) (lift h d v)))).(eq_ind_r TList (TApp (lifts h d 
+t0) (lift h d v)) (\lambda (t1: TList).(eq TList (TCons (lift h d t) t1) 
+(TCons (lift h d t) (TApp (lifts h d t0) (lift h d v))))) (refl_equal TList 
+(TCons (lift h d t) (TApp (lifts h d t0) (lift h d v)))) (lifts h d (TApp t0 
+v)) H)))) vs)))).
+
+theorem pr3_flat:
+ \forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr3 c u1 u2) \to (\forall 
+(t1: T).(\forall (t2: T).((pr3 c t1 t2) \to (\forall (f: F).(pr3 c (THead 
+(Flat f) u1 t1) (THead (Flat f) u2 t2)))))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr3 c u1 
+u2)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H0: (pr3 c t1 t2)).(\lambda 
+(f: F).(pr3_head_12 c u1 u2 H (Flat f) t1 t2 (pr3_cflat c t1 t2 H0 f 
+u2))))))))).
+
+theorem pr3_gen_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u1: 
+T).(\forall (t1: T).(\forall (x: T).((pr3 c (THead (Bind b) u1 t1) x) \to (or 
+(ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind b) u2 
+t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: 
+T).(\lambda (t2: T).(pr3 (CHead c (Bind b) u1) t1 t2)))) (pr3 (CHead c (Bind 
+b) u1) t1 (lift (S O) O x)))))))))
+\def
+ \lambda (b: B).(match b in B return (\lambda (b0: B).((not (eq B b0 Abst)) 
+\to (\forall (c: C).(\forall (u1: T).(\forall (t1: T).(\forall (x: T).((pr3 c 
+(THead (Bind b0) u1 t1) x) \to (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: 
+T).(eq T x (THead (Bind b0) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c 
+u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind b0) u1) t1 
+t2)))) (pr3 (CHead c (Bind b0) u1) t1 (lift (S O) O x)))))))))) with [Abbr 
+\Rightarrow (\lambda (_: (not (eq B Abbr Abst))).(\lambda (c: C).(\lambda 
+(u1: T).(\lambda (t1: T).(\lambda (x: T).(\lambda (H0: (pr3 c (THead (Bind 
+Abbr) u1 t1) x)).(let H1 \def (pr3_gen_abbr c u1 t1 x H0) in (or_ind (ex3_2 T 
+T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) 
+(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 (CHead c (Bind Abbr) u1) 
+t1 (lift (S O) O x)) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x 
+(THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) 
+(\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 
+(CHead c (Bind Abbr) u1) t1 (lift (S O) O x))) (\lambda (H2: (ex3_2 T T 
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) 
+(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2))))).(ex3_2_ind T T (\lambda (u2: 
+T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: 
+T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 
+(CHead c (Bind Abbr) u1) t1 t2))) (or (ex3_2 T T (\lambda (u2: T).(\lambda 
+(t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: 
+T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Abbr) 
+u1) t1 t2)))) (pr3 (CHead c (Bind Abbr) u1) t1 (lift (S O) O x))) (\lambda 
+(x0: T).(\lambda (x1: T).(\lambda (H3: (eq T x (THead (Bind Abbr) x0 
+x1))).(\lambda (H4: (pr3 c u1 x0)).(\lambda (H5: (pr3 (CHead c (Bind Abbr) 
+u1) t1 x1)).(or_introl (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x 
+(THead (Bind Abbr) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) 
+(\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 
+(CHead c (Bind Abbr) u1) t1 (lift (S O) O x)) (ex3_2_intro T T (\lambda (u2: 
+T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) (\lambda (u2: 
+T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 
+(CHead c (Bind Abbr) u1) t1 t2))) x0 x1 H3 H4 H5))))))) H2)) (\lambda (H2: 
+(pr3 (CHead c (Bind Abbr) u1) t1 (lift (S O) O x))).(or_intror (ex3_2 T T 
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abbr) u2 t2)))) 
+(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 (CHead c (Bind Abbr) u1) t1 t2)))) (pr3 (CHead c (Bind Abbr) u1) 
+t1 (lift (S O) O x)) H2)) H1)))))))) | Abst \Rightarrow (\lambda (H: (not (eq 
+B Abst Abst))).(\lambda (c: C).(\lambda (u1: T).(\lambda (t1: T).(\lambda (x: 
+T).(\lambda (_: (pr3 c (THead (Bind Abst) u1 t1) x)).(let H1 \def (match (H 
+(refl_equal B Abst)) in False return (\lambda (_: False).(or (ex3_2 T T 
+(\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Abst) u2 t2)))) 
+(\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 (CHead c (Bind Abst) u1) t1 t2)))) (pr3 (CHead c (Bind Abst) u1) 
+t1 (lift (S O) O x)))) with []) in H1))))))) | Void \Rightarrow (\lambda (_: 
+(not (eq B Void Abst))).(\lambda (c: C).(\lambda (u1: T).(\lambda (t1: 
+T).(\lambda (x: T).(\lambda (H0: (pr3 c (THead (Bind Void) u1 t1) x)).(let H1 
+\def (pr3_gen_void c u1 t1 x H0) in (or_ind (ex3_2 T T (\lambda (u2: 
+T).(\lambda (t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: 
+T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall 
+(b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) u) t1 t2)))))) (pr3 (CHead c 
+(Bind Void) u1) t1 (lift (S O) O x)) (or (ex3_2 T T (\lambda (u2: T).(\lambda 
+(t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: 
+T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) 
+u1) t1 t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S O) O x))) (\lambda 
+(H2: (ex3_2 T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead (Bind Void) 
+u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: 
+T).(\lambda (t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) 
+u) t1 t2))))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t2: T).(eq T x 
+(THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) 
+(\lambda (_: T).(\lambda (t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead 
+c (Bind b0) u) t1 t2))))) (or (ex3_2 T T (\lambda (u2: T).(\lambda (t2: 
+T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 
+c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) u1) t1 
+t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S O) O x))) (\lambda (x0: 
+T).(\lambda (x1: T).(\lambda (H3: (eq T x (THead (Bind Void) x0 
+x1))).(\lambda (H4: (pr3 c u1 x0)).(\lambda (H5: ((\forall (b0: B).(\forall 
+(u: T).(pr3 (CHead c (Bind b0) u) t1 x1))))).(or_introl (ex3_2 T T (\lambda 
+(u2: T).(\lambda (t2: T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: 
+T).(\lambda (_: T).(pr3 c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 
+(CHead c (Bind Void) u1) t1 t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S 
+O) O x)) (ex3_2_intro T T (\lambda (u2: T).(\lambda (t2: T).(eq T x (THead 
+(Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c u1 u2))) 
+(\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) u1) t1 t2))) x0 x1 
+H3 H4 (H5 Void u1)))))))) H2)) (\lambda (H2: (pr3 (CHead c (Bind Void) u1) t1 
+(lift (S O) O x))).(or_intror (ex3_2 T T (\lambda (u2: T).(\lambda (t2: 
+T).(eq T x (THead (Bind Void) u2 t2)))) (\lambda (u2: T).(\lambda (_: T).(pr3 
+c u1 u2))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind Void) u1) t1 
+t2)))) (pr3 (CHead c (Bind Void) u1) t1 (lift (S O) O x)) H2)) H1))))))))]).
+
+theorem pr3_iso_appls_abbr:
+ \forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c 
+(CHead d (Bind Abbr) w)) \to (\forall (vs: TList).(let u1 \def (THeads (Flat 
+Appl) vs (TLRef i)) in (\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to 
+(\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) vs (lift (S i) O w)) 
+u2))))))))))
+\def
+ \lambda (c: C).(\lambda (d: C).(\lambda (w: T).(\lambda (i: nat).(\lambda 
+(H: (getl i c (CHead d (Bind Abbr) w))).(\lambda (vs: TList).(TList_ind 
+(\lambda (t: TList).(let u1 \def (THeads (Flat Appl) t (TLRef i)) in (\forall 
+(u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to (\forall (P: Prop).P))) \to 
+(pr3 c (THeads (Flat Appl) t (lift (S i) O w)) u2)))))) (\lambda (u2: 
+T).(\lambda (H0: (pr3 c (TLRef i) u2)).(\lambda (H1: (((iso (TLRef i) u2) \to 
+(\forall (P: Prop).P)))).(let H2 \def (pr3_gen_lref c u2 i H0) in (or_ind (eq 
+T u2 (TLRef i)) (ex3_3 C T T (\lambda (d0: C).(\lambda (u: T).(\lambda (_: 
+T).(getl i c (CHead d0 (Bind Abbr) u))))) (\lambda (d0: C).(\lambda (u: 
+T).(\lambda (v: T).(pr3 d0 u v)))) (\lambda (_: C).(\lambda (_: T).(\lambda 
+(v: T).(eq T u2 (lift (S i) O v)))))) (pr3 c (lift (S i) O w) u2) (\lambda 
+(H3: (eq T u2 (TLRef i))).(let H4 \def (eq_ind T u2 (\lambda (t: T).((iso 
+(TLRef i) t) \to (\forall (P: Prop).P))) H1 (TLRef i) H3) in (eq_ind_r T 
+(TLRef i) (\lambda (t: T).(pr3 c (lift (S i) O w) t)) (H4 (iso_refl (TLRef 
+i)) (pr3 c (lift (S i) O w) (TLRef i))) u2 H3))) (\lambda (H3: (ex3_3 C T T 
+(\lambda (d0: C).(\lambda (u: T).(\lambda (_: T).(getl i c (CHead d0 (Bind 
+Abbr) u))))) (\lambda (d0: C).(\lambda (u: T).(\lambda (v: T).(pr3 d0 u v)))) 
+(\lambda (_: C).(\lambda (_: T).(\lambda (v: T).(eq T u2 (lift (S i) O 
+v))))))).(ex3_3_ind C T T (\lambda (d0: C).(\lambda (u: T).(\lambda (_: 
+T).(getl i c (CHead d0 (Bind Abbr) u))))) (\lambda (d0: C).(\lambda (u: 
+T).(\lambda (v: T).(pr3 d0 u v)))) (\lambda (_: C).(\lambda (_: T).(\lambda 
+(v: T).(eq T u2 (lift (S i) O v))))) (pr3 c (lift (S i) O w) u2) (\lambda 
+(x0: C).(\lambda (x1: T).(\lambda (x2: T).(\lambda (H4: (getl i c (CHead x0 
+(Bind Abbr) x1))).(\lambda (H5: (pr3 x0 x1 x2)).(\lambda (H6: (eq T u2 (lift 
+(S i) O x2))).(let H7 \def (eq_ind T u2 (\lambda (t: T).((iso (TLRef i) t) 
+\to (\forall (P: Prop).P))) H1 (lift (S i) O x2) H6) in (eq_ind_r T (lift (S 
+i) O x2) (\lambda (t: T).(pr3 c (lift (S i) O w) t)) (let H8 \def (eq_ind C 
+(CHead d (Bind Abbr) w) (\lambda (c0: C).(getl i c c0)) H (CHead x0 (Bind 
+Abbr) x1) (getl_mono c (CHead d (Bind Abbr) w) i H (CHead x0 (Bind Abbr) x1) 
+H4)) in (let H9 \def (f_equal C C (\lambda (e: C).(match e in C return 
+(\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c0 _ _) \Rightarrow 
+c0])) (CHead d (Bind Abbr) w) (CHead x0 (Bind Abbr) x1) (getl_mono c (CHead d 
+(Bind Abbr) w) i H (CHead x0 (Bind Abbr) x1) H4)) in ((let H10 \def (f_equal 
+C T (\lambda (e: C).(match e in C return (\lambda (_: C).T) with [(CSort _) 
+\Rightarrow w | (CHead _ _ t) \Rightarrow t])) (CHead d (Bind Abbr) w) (CHead 
+x0 (Bind Abbr) x1) (getl_mono c (CHead d (Bind Abbr) w) i H (CHead x0 (Bind 
+Abbr) x1) H4)) in (\lambda (H11: (eq C d x0)).(let H12 \def (eq_ind_r T x1 
+(\lambda (t: T).(getl i c (CHead x0 (Bind Abbr) t))) H8 w H10) in (let H13 
+\def (eq_ind_r T x1 (\lambda (t: T).(pr3 x0 t x2)) H5 w H10) in (let H14 \def 
+(eq_ind_r C x0 (\lambda (c0: C).(getl i c (CHead c0 (Bind Abbr) w))) H12 d 
+H11) in (let H15 \def (eq_ind_r C x0 (\lambda (c0: C).(pr3 c0 w x2)) H13 d 
+H11) in (pr3_lift c d (S i) O (getl_drop Abbr c d w i H14) w x2 H15))))))) 
+H9))) u2 H6)))))))) H3)) H2))))) (\lambda (t: T).(\lambda (t0: 
+TList).(\lambda (H0: ((\forall (u2: T).((pr3 c (THeads (Flat Appl) t0 (TLRef 
+i)) u2) \to ((((iso (THeads (Flat Appl) t0 (TLRef i)) u2) \to (\forall (P: 
+Prop).P))) \to (pr3 c (THeads (Flat Appl) t0 (lift (S i) O w)) 
+u2)))))).(\lambda (u2: T).(\lambda (H1: (pr3 c (THead (Flat Appl) t (THeads 
+(Flat Appl) t0 (TLRef i))) u2)).(\lambda (H2: (((iso (THead (Flat Appl) t 
+(THeads (Flat Appl) t0 (TLRef i))) u2) \to (\forall (P: Prop).P)))).(let H3 
+\def (pr3_gen_appl c t (THeads (Flat Appl) t0 (TLRef i)) u2 H1) in (or3_ind 
+(ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 
+t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: 
+T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) t2)))) (ex4_4 T 
+T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 
+c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda 
+(u3: T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) 
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) 
+z1 t2)))))))) (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) 
+(\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind 
+b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) y2 (THead 
+(Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t 
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b: 
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda 
+(y2: T).(pr3 (CHead c (Bind b) y2) z1 z2)))))))) (pr3 c (THead (Flat Appl) t 
+(THeads (Flat Appl) t0 (lift (S i) O w))) u2) (\lambda (H4: (ex3_2 T T 
+(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) 
+(\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: T).(\lambda (t2: 
+T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) t2))))).(ex3_2_ind T T (\lambda 
+(u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: 
+T).(\lambda (_: T).(pr3 c t u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c 
+(THeads (Flat Appl) t0 (TLRef i)) t2))) (pr3 c (THead (Flat Appl) t (THeads 
+(Flat Appl) t0 (lift (S i) O w))) u2) (\lambda (x0: T).(\lambda (x1: 
+T).(\lambda (H5: (eq T u2 (THead (Flat Appl) x0 x1))).(\lambda (_: (pr3 c t 
+x0)).(\lambda (_: (pr3 c (THeads (Flat Appl) t0 (TLRef i)) x1)).(let H8 \def 
+(eq_ind T u2 (\lambda (t1: T).((iso (THead (Flat Appl) t (THeads (Flat Appl) 
+t0 (TLRef i))) t1) \to (\forall (P: Prop).P))) H2 (THead (Flat Appl) x0 x1) 
+H5) in (eq_ind_r T (THead (Flat Appl) x0 x1) (\lambda (t1: T).(pr3 c (THead 
+(Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) t1)) (H8 (iso_head t 
+x0 (THeads (Flat Appl) t0 (TLRef i)) x1 (Flat Appl)) (pr3 c (THead (Flat 
+Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) (THead (Flat Appl) x0 x1))) 
+u2 H5))))))) H4)) (\lambda (H4: (ex4_4 T T T T (\lambda (_: T).(\lambda (_: 
+T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind Abbr) u3 t2) u2))))) 
+(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t 
+u3))))) (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: 
+T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind Abst) y1 z1)))))) 
+(\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall 
+(b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) z1 t2))))))))).(ex4_4_ind T 
+T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 
+c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda 
+(u3: T).(\lambda (_: T).(pr3 c t u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) 
+(THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (t2: T).(\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind b) u) 
+z1 t2))))))) (pr3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O 
+w))) u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: 
+T).(\lambda (H5: (pr3 c (THead (Bind Abbr) x2 x3) u2)).(\lambda (H6: (pr3 c t 
+x2)).(\lambda (H7: (pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind 
+Abst) x0 x1))).(\lambda (H8: ((\forall (b: B).(\forall (u: T).(pr3 (CHead c 
+(Bind b) u) x1 x3))))).(pr3_t (THead (Bind Abbr) t x1) (THead (Flat Appl) t 
+(THeads (Flat Appl) t0 (lift (S i) O w))) c (pr3_t (THead (Flat Appl) t 
+(THead (Bind Abst) x0 x1)) (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift 
+(S i) O w))) c (pr3_thin_dx c (THeads (Flat Appl) t0 (lift (S i) O w)) (THead 
+(Bind Abst) x0 x1) (H0 (THead (Bind Abst) x0 x1) H7 (\lambda (H9: (iso 
+(THeads (Flat Appl) t0 (TLRef i)) (THead (Bind Abst) x0 x1))).(\lambda (P: 
+Prop).(iso_flats_lref_bind_false Appl Abst i x0 x1 t0 H9 P)))) t Appl) (THead 
+(Bind Abbr) t x1) (pr3_pr2 c (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) 
+(THead (Bind Abbr) t x1) (pr2_free c (THead (Flat Appl) t (THead (Bind Abst) 
+x0 x1)) (THead (Bind Abbr) t x1) (pr0_beta x0 t t (pr0_refl t) x1 x1 
+(pr0_refl x1))))) u2 (pr3_t (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) t 
+x1) c (pr3_head_12 c t x2 H6 (Bind Abbr) x1 x3 (H8 Abbr x2)) u2 H5)))))))))) 
+H4)) (\lambda (H4: (ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B 
+b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) 
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) 
+y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda 
+(_: T).(pr3 c t u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) 
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b) y2) z1 z2))))))))).(ex6_6_ind 
+B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: 
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(pr3 c (THeads (Flat Appl) t0 (TLRef i)) (THead (Bind b) y1 z1)))))))) 
+(\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda 
+(u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift 
+(S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c t u3))))))) 
+(\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b: B).(\lambda (_: 
+T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr3 
+(CHead c (Bind b) y2) z1 z2))))))) (pr3 c (THead (Flat Appl) t (THeads (Flat 
+Appl) t0 (lift (S i) O w))) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda 
+(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H5: (not 
+(eq B x0 Abst))).(\lambda (H6: (pr3 c (THeads (Flat Appl) t0 (TLRef i)) 
+(THead (Bind x0) x1 x2))).(\lambda (H7: (pr3 c (THead (Bind x0) x5 (THead 
+(Flat Appl) (lift (S O) O x4) x3)) u2)).(\lambda (H8: (pr3 c t x4)).(\lambda 
+(H9: (pr3 c x1 x5)).(\lambda (H10: (pr3 (CHead c (Bind x0) x5) x2 x3)).(pr3_t 
+(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) (THead (Flat 
+Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) c (pr3_t (THead (Bind x0) 
+x1 (THead (Flat Appl) (lift (S O) O t) x2)) (THead (Flat Appl) t (THeads 
+(Flat Appl) t0 (lift (S i) O w))) c (pr3_t (THead (Flat Appl) t (THead (Bind 
+x0) x1 x2)) (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O w))) c 
+(pr3_thin_dx c (THeads (Flat Appl) t0 (lift (S i) O w)) (THead (Bind x0) x1 
+x2) (H0 (THead (Bind x0) x1 x2) H6 (\lambda (H11: (iso (THeads (Flat Appl) t0 
+(TLRef i)) (THead (Bind x0) x1 x2))).(\lambda (P: 
+Prop).(iso_flats_lref_bind_false Appl x0 i x1 x2 t0 H11 P)))) t Appl) (THead 
+(Bind x0) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (pr3_pr2 c (THead (Flat 
+Appl) t (THead (Bind x0) x1 x2)) (THead (Bind x0) x1 (THead (Flat Appl) (lift 
+(S O) O t) x2)) (pr2_free c (THead (Flat Appl) t (THead (Bind x0) x1 x2)) 
+(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O t) x2)) (pr0_upsilon x0 
+H5 t t (pr0_refl t) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl x2))))) (THead (Bind 
+x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) (pr3_head_12 c x1 x1 
+(pr3_refl c x1) (Bind x0) (THead (Flat Appl) (lift (S O) O t) x2) (THead 
+(Flat Appl) (lift (S O) O x4) x2) (pr3_head_12 (CHead c (Bind x0) x1) (lift 
+(S O) O t) (lift (S O) O x4) (pr3_lift (CHead c (Bind x0) x1) c (S O) O 
+(drop_drop (Bind x0) O c c (drop_refl c) x1) t x4 H8) (Flat Appl) x2 x2 
+(pr3_refl (CHead (CHead c (Bind x0) x1) (Flat Appl) (lift (S O) O x4)) x2)))) 
+u2 (pr3_t (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) 
+(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) c (pr3_head_12 
+c x1 x5 H9 (Bind x0) (THead (Flat Appl) (lift (S O) O x4) x2) (THead (Flat 
+Appl) (lift (S O) O x4) x3) (pr3_thin_dx (CHead c (Bind x0) x5) x2 x3 H10 
+(lift (S O) O x4) Appl)) u2 H7)))))))))))))) H4)) H3)))))))) vs)))))).
+
+theorem pr3_iso_appl_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (v1: T).(\forall (v2: 
+T).(\forall (t: T).(let u1 \def (THead (Flat Appl) v1 (THead (Bind b) v2 t)) 
+in (\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to 
+(\forall (P: Prop).P))) \to (pr3 c (THead (Bind b) v2 (THead (Flat Appl) 
+(lift (S O) O v1) t)) u2))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (v1: T).(\lambda 
+(v2: T).(\lambda (t: T).(\lambda (c: C).(\lambda (u2: T).(\lambda (H0: (pr3 c 
+(THead (Flat Appl) v1 (THead (Bind b) v2 t)) u2)).(\lambda (H1: (((iso (THead 
+(Flat Appl) v1 (THead (Bind b) v2 t)) u2) \to (\forall (P: Prop).P)))).(let 
+H2 \def (pr3_gen_appl c v1 (THead (Bind b) v2 t) u2 H0) in (or3_ind (ex3_2 T 
+T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) 
+(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 c (THead (Bind b) v2 t) t2)))) (ex4_4 T T T T (\lambda (_: 
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind 
+Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: 
+T).(\lambda (_: T).(pr3 c v1 u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind 
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda 
+(t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) u) z1 
+t2)))))))) (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) 
+(\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind b0) y1 
+z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: 
+T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) y2 (THead (Flat 
+Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 
+u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) (\lambda (b0: 
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda 
+(y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2)))))))) (pr3 c (THead (Bind b) v2 
+(THead (Flat Appl) (lift (S O) O v1) t)) u2) (\lambda (H3: (ex3_2 T T 
+(\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) 
+(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 c (THead (Bind b) v2 t) t2))))).(ex3_2_ind T T (\lambda (u3: 
+T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: 
+T).(\lambda (_: T).(pr3 c v1 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c 
+(THead (Bind b) v2 t) t2))) (pr3 c (THead (Bind b) v2 (THead (Flat Appl) 
+(lift (S O) O v1) t)) u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (eq 
+T u2 (THead (Flat Appl) x0 x1))).(\lambda (_: (pr3 c v1 x0)).(\lambda (_: 
+(pr3 c (THead (Bind b) v2 t) x1)).(let H7 \def (eq_ind T u2 (\lambda (t0: 
+T).((iso (THead (Flat Appl) v1 (THead (Bind b) v2 t)) t0) \to (\forall (P: 
+Prop).P))) H1 (THead (Flat Appl) x0 x1) H4) in (eq_ind_r T (THead (Flat Appl) 
+x0 x1) (\lambda (t0: T).(pr3 c (THead (Bind b) v2 (THead (Flat Appl) (lift (S 
+O) O v1) t)) t0)) (H7 (iso_head v1 x0 (THead (Bind b) v2 t) x1 (Flat Appl)) 
+(pr3 c (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) t)) (THead 
+(Flat Appl) x0 x1))) u2 H4))))))) H3)) (\lambda (H3: (ex4_4 T T T T (\lambda 
+(_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind 
+Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: 
+T).(\lambda (_: T).(pr3 c v1 u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind 
+Abst) y1 z1)))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda 
+(t2: T).(\forall (b0: B).(\forall (u: T).(pr3 (CHead c (Bind b0) u) z1 
+t2))))))))).(ex4_4_ind T T T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: 
+T).(\lambda (t2: T).(pr3 c (THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: 
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))))) 
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(pr3 c 
+(THead (Bind b) v2 t) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda 
+(z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: B).(\forall (u: 
+T).(pr3 (CHead c (Bind b0) u) z1 t2))))))) (pr3 c (THead (Bind b) v2 (THead 
+(Flat Appl) (lift (S O) O v1) t)) u2) (\lambda (x0: T).(\lambda (x1: 
+T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (H4: (pr3 c (THead (Bind Abbr) 
+x2 x3) u2)).(\lambda (H5: (pr3 c v1 x2)).(\lambda (H6: (pr3 c (THead (Bind b) 
+v2 t) (THead (Bind Abst) x0 x1))).(\lambda (H7: ((\forall (b0: B).(\forall 
+(u: T).(pr3 (CHead c (Bind b0) u) x1 x3))))).(pr3_t (THead (Bind Abbr) x2 x3) 
+(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) t)) c (let H_x \def 
+(pr3_gen_bind b H c v2 t (THead (Bind Abst) x0 x1) H6) in (let H8 \def H_x in 
+(or_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind Abst) 
+x0 x1) (THead (Bind b) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c v2 
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 (CHead c (Bind b) v2) t t2)))) 
+(pr3 (CHead c (Bind b) v2) t (lift (S O) O (THead (Bind Abst) x0 x1))) (pr3 c 
+(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind 
+Abbr) x2 x3)) (\lambda (H9: (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq 
+T (THead (Bind Abst) x0 x1) (THead (Bind b) u3 t2)))) (\lambda (u3: 
+T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 
+(CHead c (Bind b) v2) t t2))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t2: 
+T).(eq T (THead (Bind Abst) x0 x1) (THead (Bind b) u3 t2)))) (\lambda (u3: 
+T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 
+(CHead c (Bind b) v2) t t2))) (pr3 c (THead (Bind b) v2 (THead (Flat Appl) 
+(lift (S O) O v1) t)) (THead (Bind Abbr) x2 x3)) (\lambda (x4: T).(\lambda 
+(x5: T).(\lambda (H10: (eq T (THead (Bind Abst) x0 x1) (THead (Bind b) x4 
+x5))).(\lambda (H11: (pr3 c v2 x4)).(\lambda (H12: (pr3 (CHead c (Bind b) v2) 
+t x5)).(let H13 \def (f_equal T B (\lambda (e: T).(match e in T return 
+(\lambda (_: T).B) with [(TSort _) \Rightarrow Abst | (TLRef _) \Rightarrow 
+Abst | (THead k _ _) \Rightarrow (match k in K return (\lambda (_: K).B) with 
+[(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow Abst])])) (THead (Bind Abst) 
+x0 x1) (THead (Bind b) x4 x5) H10) in ((let H14 \def (f_equal T T (\lambda 
+(e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 
+| (TLRef _) \Rightarrow x0 | (THead _ t0 _) \Rightarrow t0])) (THead (Bind 
+Abst) x0 x1) (THead (Bind b) x4 x5) H10) in ((let H15 \def (f_equal T T 
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) 
+\Rightarrow x1 | (TLRef _) \Rightarrow x1 | (THead _ _ t0) \Rightarrow t0])) 
+(THead (Bind Abst) x0 x1) (THead (Bind b) x4 x5) H10) in (\lambda (H16: (eq T 
+x0 x4)).(\lambda (H17: (eq B Abst b)).(let H18 \def (eq_ind_r T x5 (\lambda 
+(t0: T).(pr3 (CHead c (Bind b) v2) t t0)) H12 x1 H15) in (let H19 \def 
+(eq_ind_r T x4 (\lambda (t0: T).(pr3 c v2 t0)) H11 x0 H16) in (let H20 \def 
+(eq_ind_r B b (\lambda (b0: B).(pr3 (CHead c (Bind b0) v2) t x1)) H18 Abst 
+H17) in (let H21 \def (eq_ind_r B b (\lambda (b0: B).(not (eq B b0 Abst))) H 
+Abst H17) in (eq_ind B Abst (\lambda (b0: B).(pr3 c (THead (Bind b0) v2 
+(THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind Abbr) x2 x3))) (let H22 
+\def (match (H21 (refl_equal B Abst)) in False return (\lambda (_: 
+False).(pr3 c (THead (Bind Abst) v2 (THead (Flat Appl) (lift (S O) O v1) t)) 
+(THead (Bind Abbr) x2 x3))) with []) in H22) b H17)))))))) H14)) H13))))))) 
+H9)) (\lambda (H9: (pr3 (CHead c (Bind b) v2) t (lift (S O) O (THead (Bind 
+Abst) x0 x1)))).(pr3_t (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O 
+x2) (lift (S O) O (THead (Bind Abst) x0 x1)))) (THead (Bind b) v2 (THead 
+(Flat Appl) (lift (S O) O v1) t)) c (pr3_head_2 c v2 (THead (Flat Appl) (lift 
+(S O) O v1) t) (THead (Flat Appl) (lift (S O) O x2) (lift (S O) O (THead 
+(Bind Abst) x0 x1))) (Bind b) (pr3_flat (CHead c (Bind b) v2) (lift (S O) O 
+v1) (lift (S O) O x2) (pr3_lift (CHead c (Bind b) v2) c (S O) O (drop_drop 
+(Bind b) O c c (drop_refl c) v2) v1 x2 H5) t (lift (S O) O (THead (Bind Abst) 
+x0 x1)) H9 Appl)) (THead (Bind Abbr) x2 x3) (eq_ind T (lift (S O) O (THead 
+(Flat Appl) x2 (THead (Bind Abst) x0 x1))) (\lambda (t0: T).(pr3 c (THead 
+(Bind b) v2 t0) (THead (Bind Abbr) x2 x3))) (pr3_sing c (THead (Bind Abbr) x2 
+x1) (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) x2 (THead (Bind Abst) 
+x0 x1)))) (pr2_free c (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) x2 
+(THead (Bind Abst) x0 x1)))) (THead (Bind Abbr) x2 x1) (pr0_zeta b H (THead 
+(Flat Appl) x2 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) x2 x1) (pr0_beta 
+x0 x2 x2 (pr0_refl x2) x1 x1 (pr0_refl x1)) v2)) (THead (Bind Abbr) x2 x3) 
+(pr3_head_12 c x2 x2 (pr3_refl c x2) (Bind Abbr) x1 x3 (H7 Abbr x2))) (THead 
+(Flat Appl) (lift (S O) O x2) (lift (S O) O (THead (Bind Abst) x0 x1))) 
+(lift_flat Appl x2 (THead (Bind Abst) x0 x1) (S O) O)))) H8))) u2 H4))))))))) 
+H3)) (\lambda (H3: (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B 
+b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda 
+(_: T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THead (Bind b) v2 t) (THead 
+(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) 
+y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda 
+(_: T).(pr3 c v1 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) 
+(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2))))))))).(ex6_6_ind 
+B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: 
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(pr3 c (THead (Bind b) v2 t) (THead (Bind b0) y1 z1)))))))) (\lambda 
+(b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u3: 
+T).(\lambda (y2: T).(pr3 c (THead (Bind b0) y2 (THead (Flat Appl) (lift (S O) 
+O u3) z2)) u2))))))) (\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (u3: T).(\lambda (_: T).(pr3 c v1 u3))))))) (\lambda (_: 
+B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(y2: T).(pr3 c y1 y2))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (z1: 
+T).(\lambda (z2: T).(\lambda (_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) 
+y2) z1 z2))))))) (pr3 c (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O 
+v1) t)) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: 
+T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H4: (not (eq B x0 
+Abst))).(\lambda (H5: (pr3 c (THead (Bind b) v2 t) (THead (Bind x0) x1 
+x2))).(\lambda (H6: (pr3 c (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) 
+O x4) x3)) u2)).(\lambda (H7: (pr3 c v1 x4)).(\lambda (H8: (pr3 c x1 
+x5)).(\lambda (H9: (pr3 (CHead c (Bind x0) x5) x2 x3)).(pr3_t (THead (Bind 
+x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) (THead (Bind b) v2 (THead 
+(Flat Appl) (lift (S O) O v1) t)) c (let H_x \def (pr3_gen_bind b H c v2 t 
+(THead (Bind x0) x1 x2) H5) in (let H10 \def H_x in (or_ind (ex3_2 T T 
+(\lambda (u3: T).(\lambda (t2: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind 
+b) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: 
+T).(\lambda (t2: T).(pr3 (CHead c (Bind b) v2) t t2)))) (pr3 (CHead c (Bind 
+b) v2) t (lift (S O) O (THead (Bind x0) x1 x2))) (pr3 c (THead (Bind b) v2 
+(THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind x0) x5 (THead (Flat 
+Appl) (lift (S O) O x4) x3))) (\lambda (H11: (ex3_2 T T (\lambda (u3: 
+T).(\lambda (t2: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) u3 t2)))) 
+(\lambda (u3: T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 (CHead c (Bind b) v2) t t2))))).(ex3_2_ind T T (\lambda (u3: 
+T).(\lambda (t2: T).(eq T (THead (Bind x0) x1 x2) (THead (Bind b) u3 t2)))) 
+(\lambda (u3: T).(\lambda (_: T).(pr3 c v2 u3))) (\lambda (_: T).(\lambda 
+(t2: T).(pr3 (CHead c (Bind b) v2) t t2))) (pr3 c (THead (Bind b) v2 (THead 
+(Flat Appl) (lift (S O) O v1) t)) (THead (Bind x0) x5 (THead (Flat Appl) 
+(lift (S O) O x4) x3))) (\lambda (x6: T).(\lambda (x7: T).(\lambda (H12: (eq 
+T (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7))).(\lambda (H13: (pr3 c v2 
+x6)).(\lambda (H14: (pr3 (CHead c (Bind b) v2) t x7)).(let H15 \def (f_equal 
+T B (\lambda (e: T).(match e in T return (\lambda (_: T).B) with [(TSort _) 
+\Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead k _ _) \Rightarrow (match 
+k in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) 
+\Rightarrow x0])])) (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7) H12) in 
+((let H16 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: 
+T).T) with [(TSort _) \Rightarrow x1 | (TLRef _) \Rightarrow x1 | (THead _ t0 
+_) \Rightarrow t0])) (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7) H12) in 
+((let H17 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: 
+T).T) with [(TSort _) \Rightarrow x2 | (TLRef _) \Rightarrow x2 | (THead _ _ 
+t0) \Rightarrow t0])) (THead (Bind x0) x1 x2) (THead (Bind b) x6 x7) H12) in 
+(\lambda (H18: (eq T x1 x6)).(\lambda (H19: (eq B x0 b)).(let H20 \def 
+(eq_ind_r T x7 (\lambda (t0: T).(pr3 (CHead c (Bind b) v2) t t0)) H14 x2 H17) 
+in (let H21 \def (eq_ind_r T x6 (\lambda (t0: T).(pr3 c v2 t0)) H13 x1 H18) 
+in (let H22 \def (eq_ind B x0 (\lambda (b0: B).(pr3 (CHead c (Bind b0) x5) x2 
+x3)) H9 b H19) in (let H23 \def (eq_ind B x0 (\lambda (b0: B).(not (eq B b0 
+Abst))) H4 b H19) in (eq_ind_r B b (\lambda (b0: B).(pr3 c (THead (Bind b) v2 
+(THead (Flat Appl) (lift (S O) O v1) t)) (THead (Bind b0) x5 (THead (Flat 
+Appl) (lift (S O) O x4) x3)))) (pr3_head_21 c v2 x5 (pr3_t x1 v2 c H21 x5 H8) 
+(Bind b) (THead (Flat Appl) (lift (S O) O v1) t) (THead (Flat Appl) (lift (S 
+O) O x4) x3) (pr3_flat (CHead c (Bind b) v2) (lift (S O) O v1) (lift (S O) O 
+x4) (pr3_lift (CHead c (Bind b) v2) c (S O) O (drop_drop (Bind b) O c c 
+(drop_refl c) v2) v1 x4 H7) t x3 (pr3_t x2 t (CHead c (Bind b) v2) H20 x3 
+(pr3_pr3_pr3_t c v2 x1 H21 x2 x3 (Bind b) (pr3_pr3_pr3_t c x1 x5 H8 x2 x3 
+(Bind b) H22))) Appl)) x0 H19)))))))) H16)) H15))))))) H11)) (\lambda (H11: 
+(pr3 (CHead c (Bind b) v2) t (lift (S O) O (THead (Bind x0) x1 x2)))).(pr3_t 
+(THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O x4) (lift (S O) O (THead 
+(Bind x0) x1 x2)))) (THead (Bind b) v2 (THead (Flat Appl) (lift (S O) O v1) 
+t)) c (pr3_head_2 c v2 (THead (Flat Appl) (lift (S O) O v1) t) (THead (Flat 
+Appl) (lift (S O) O x4) (lift (S O) O (THead (Bind x0) x1 x2))) (Bind b) 
+(pr3_flat (CHead c (Bind b) v2) (lift (S O) O v1) (lift (S O) O x4) (pr3_lift 
+(CHead c (Bind b) v2) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) v2) 
+v1 x4 H7) t (lift (S O) O (THead (Bind x0) x1 x2)) H11 Appl)) (THead (Bind 
+x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) (eq_ind T (lift (S O) O 
+(THead (Flat Appl) x4 (THead (Bind x0) x1 x2))) (\lambda (t0: T).(pr3 c 
+(THead (Bind b) v2 t0) (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O 
+x4) x3)))) (pr3_sing c (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O 
+x4) x2)) (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) x4 (THead (Bind 
+x0) x1 x2)))) (pr2_free c (THead (Bind b) v2 (lift (S O) O (THead (Flat Appl) 
+x4 (THead (Bind x0) x1 x2)))) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S 
+O) O x4) x2)) (pr0_zeta b H (THead (Flat Appl) x4 (THead (Bind x0) x1 x2)) 
+(THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O x4) x2)) (pr0_upsilon x0 
+H4 x4 x4 (pr0_refl x4) x1 x1 (pr0_refl x1) x2 x2 (pr0_refl x2)) v2)) (THead 
+(Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) (pr3_head_12 c x1 x5 
+H8 (Bind x0) (THead (Flat Appl) (lift (S O) O x4) x2) (THead (Flat Appl) 
+(lift (S O) O x4) x3) (pr3_thin_dx (CHead c (Bind x0) x5) x2 x3 H9 (lift (S 
+O) O x4) Appl))) (THead (Flat Appl) (lift (S O) O x4) (lift (S O) O (THead 
+(Bind x0) x1 x2))) (lift_flat Appl x4 (THead (Bind x0) x1 x2) (S O) O)))) 
+H10))) u2 H6))))))))))))) H3)) H2)))))))))).
+
+theorem pr3_iso_appls_appl_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (v: T).(\forall (u: 
+T).(\forall (t: T).(\forall (vs: TList).(let u1 \def (THeads (Flat Appl) vs 
+(THead (Flat Appl) v (THead (Bind b) u t))) in (\forall (c: C).(\forall (u2: 
+T).((pr3 c u1 u2) \to ((((iso u1 u2) \to (\forall (P: Prop).P))) \to (pr3 c 
+(THeads (Flat Appl) vs (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) 
+t))) u2)))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (v: T).(\lambda 
+(u: T).(\lambda (t: T).(\lambda (vs: TList).(TList_ind (\lambda (t0: 
+TList).(let u1 \def (THeads (Flat Appl) t0 (THead (Flat Appl) v (THead (Bind 
+b) u t))) in (\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 
+u2) \to (\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) t0 (THead 
+(Bind b) u (THead (Flat Appl) (lift (S O) O v) t))) u2))))))) (\lambda (c: 
+C).(\lambda (u2: T).(\lambda (H0: (pr3 c (THead (Flat Appl) v (THead (Bind b) 
+u t)) u2)).(\lambda (H1: (((iso (THead (Flat Appl) v (THead (Bind b) u t)) 
+u2) \to (\forall (P: Prop).P)))).(pr3_iso_appl_bind b H v u t c u2 H0 H1))))) 
+(\lambda (t0: T).(\lambda (t1: TList).(\lambda (H0: ((\forall (c: C).(\forall 
+(u2: T).((pr3 c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u 
+t))) u2) \to ((((iso (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind 
+b) u t))) u2) \to (\forall (P: Prop).P))) \to (pr3 c (THeads (Flat Appl) t1 
+(THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t))) u2))))))).(\lambda 
+(c: C).(\lambda (u2: T).(\lambda (H1: (pr3 c (THead (Flat Appl) t0 (THeads 
+(Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t)))) u2)).(\lambda 
+(H2: (((iso (THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Flat Appl) v 
+(THead (Bind b) u t)))) u2) \to (\forall (P: Prop).P)))).(let H3 \def 
+(pr3_gen_appl c t0 (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind 
+b) u t))) u2 H1) in (or3_ind (ex3_2 T T (\lambda (u3: T).(\lambda (t2: T).(eq 
+T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t0 
+u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t1 (THead 
+(Flat Appl) v (THead (Bind b) u t))) t2)))) (ex4_4 T T T T (\lambda (_: 
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind 
+Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: 
+T).(\lambda (_: T).(pr3 c t0 u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat 
+Appl) v (THead (Bind b) u t))) (THead (Bind Abst) y1 z1)))))) (\lambda (_: 
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: 
+B).(\forall (u0: T).(pr3 (CHead c (Bind b0) u0) z1 t2)))))))) (ex6_6 B T T T 
+T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda 
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(pr3 
+c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) (THead 
+(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) 
+y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda 
+(_: T).(pr3 c t0 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) 
+(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2)))))))) (pr3 c 
+(THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat 
+Appl) (lift (S O) O v) t)))) u2) (\lambda (H4: (ex3_2 T T (\lambda (u3: 
+T).(\lambda (t2: T).(eq T u2 (THead (Flat Appl) u3 t2)))) (\lambda (u3: 
+T).(\lambda (_: T).(pr3 c t0 u3))) (\lambda (_: T).(\lambda (t2: T).(pr3 c 
+(THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) 
+t2))))).(ex3_2_ind T T (\lambda (u3: T).(\lambda (t2: T).(eq T u2 (THead 
+(Flat Appl) u3 t2)))) (\lambda (u3: T).(\lambda (_: T).(pr3 c t0 u3))) 
+(\lambda (_: T).(\lambda (t2: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat 
+Appl) v (THead (Bind b) u t))) t2))) (pr3 c (THead (Flat Appl) t0 (THeads 
+(Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) 
+u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H5: (eq T u2 (THead (Flat 
+Appl) x0 x1))).(\lambda (_: (pr3 c t0 x0)).(\lambda (_: (pr3 c (THeads (Flat 
+Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) x1)).(let H8 \def 
+(eq_ind T u2 (\lambda (t2: T).((iso (THead (Flat Appl) t0 (THeads (Flat Appl) 
+t1 (THead (Flat Appl) v (THead (Bind b) u t)))) t2) \to (\forall (P: 
+Prop).P))) H2 (THead (Flat Appl) x0 x1) H5) in (eq_ind_r T (THead (Flat Appl) 
+x0 x1) (\lambda (t2: T).(pr3 c (THead (Flat Appl) t0 (THeads (Flat Appl) t1 
+(THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) t2)) (H8 
+(iso_head t0 x0 (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u 
+t))) x1 (Flat Appl)) (pr3 c (THead (Flat Appl) t0 (THeads (Flat Appl) t1 
+(THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) (THead (Flat 
+Appl) x0 x1))) u2 H5))))))) H4)) (\lambda (H4: (ex4_4 T T T T (\lambda (_: 
+T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c (THead (Bind 
+Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u3: 
+T).(\lambda (_: T).(pr3 c t0 u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat 
+Appl) v (THead (Bind b) u t))) (THead (Bind Abst) y1 z1)))))) (\lambda (_: 
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: 
+B).(\forall (u0: T).(pr3 (CHead c (Bind b0) u0) z1 t2))))))))).(ex4_4_ind T T 
+T T (\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda (t2: T).(pr3 c 
+(THead (Bind Abbr) u3 t2) u2))))) (\lambda (_: T).(\lambda (_: T).(\lambda 
+(u3: T).(\lambda (_: T).(pr3 c t0 u3))))) (\lambda (y1: T).(\lambda (z1: 
+T).(\lambda (_: T).(\lambda (_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat 
+Appl) v (THead (Bind b) u t))) (THead (Bind Abst) y1 z1)))))) (\lambda (_: 
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t2: T).(\forall (b0: 
+B).(\forall (u0: T).(pr3 (CHead c (Bind b0) u0) z1 t2))))))) (pr3 c (THead 
+(Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) 
+(lift (S O) O v) t)))) u2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: 
+T).(\lambda (x3: T).(\lambda (H5: (pr3 c (THead (Bind Abbr) x2 x3) 
+u2)).(\lambda (H6: (pr3 c t0 x2)).(\lambda (H7: (pr3 c (THeads (Flat Appl) t1 
+(THead (Flat Appl) v (THead (Bind b) u t))) (THead (Bind Abst) x0 
+x1))).(\lambda (H8: ((\forall (b0: B).(\forall (u0: T).(pr3 (CHead c (Bind 
+b0) u0) x1 x3))))).(pr3_t (THead (Bind Abbr) t0 x1) (THead (Flat Appl) t0 
+(THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) 
+t)))) c (pr3_t (THead (Flat Appl) t0 (THead (Bind Abst) x0 x1)) (THead (Flat 
+Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S 
+O) O v) t)))) c (pr3_thin_dx c (THeads (Flat Appl) t1 (THead (Bind b) u 
+(THead (Flat Appl) (lift (S O) O v) t))) (THead (Bind Abst) x0 x1) (H0 c 
+(THead (Bind Abst) x0 x1) H7 (\lambda (H9: (iso (THeads (Flat Appl) t1 (THead 
+(Flat Appl) v (THead (Bind b) u t))) (THead (Bind Abst) x0 x1))).(\lambda (P: 
+Prop).(iso_flats_flat_bind_false Appl Appl Abst x0 v x1 (THead (Bind b) u t) 
+t1 H9 P)))) t0 Appl) (THead (Bind Abbr) t0 x1) (pr3_pr2 c (THead (Flat Appl) 
+t0 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) t0 x1) (pr2_free c (THead 
+(Flat Appl) t0 (THead (Bind Abst) x0 x1)) (THead (Bind Abbr) t0 x1) (pr0_beta 
+x0 t0 t0 (pr0_refl t0) x1 x1 (pr0_refl x1))))) u2 (pr3_t (THead (Bind Abbr) 
+x2 x3) (THead (Bind Abbr) t0 x1) c (pr3_head_12 c t0 x2 H6 (Bind Abbr) x1 x3 
+(H8 Abbr x2)) u2 H5)))))))))) H4)) (\lambda (H4: (ex6_6 B T T T T T (\lambda 
+(b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: 
+T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(pr3 c 
+(THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u t))) (THead 
+(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind b0) 
+y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda 
+(_: T).(pr3 c t0 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) 
+(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2))))))))).(ex6_6_ind 
+B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: 
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(pr3 c (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead (Bind b) u 
+t))) (THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (z2: T).(\lambda (u3: T).(\lambda (y2: T).(pr3 c (THead (Bind 
+b0) y2 (THead (Flat Appl) (lift (S O) O u3) z2)) u2))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u3: T).(\lambda 
+(_: T).(pr3 c t0 u3))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr3 c y1 y2))))))) 
+(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr3 (CHead c (Bind b0) y2) z1 z2))))))) (pr3 c 
+(THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat 
+Appl) (lift (S O) O v) t)))) u2) (\lambda (x0: B).(\lambda (x1: T).(\lambda 
+(x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (H5: (not 
+(eq B x0 Abst))).(\lambda (H6: (pr3 c (THeads (Flat Appl) t1 (THead (Flat 
+Appl) v (THead (Bind b) u t))) (THead (Bind x0) x1 x2))).(\lambda (H7: (pr3 c 
+(THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) u2)).(\lambda 
+(H8: (pr3 c t0 x4)).(\lambda (H9: (pr3 c x1 x5)).(\lambda (H10: (pr3 (CHead c 
+(Bind x0) x5) x2 x3)).(pr3_t (THead (Bind x0) x1 (THead (Flat Appl) (lift (S 
+O) O x4) x2)) (THead (Flat Appl) t0 (THeads (Flat Appl) t1 (THead (Bind b) u 
+(THead (Flat Appl) (lift (S O) O v) t)))) c (pr3_t (THead (Bind x0) x1 (THead 
+(Flat Appl) (lift (S O) O t0) x2)) (THead (Flat Appl) t0 (THeads (Flat Appl) 
+t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) c (pr3_t 
+(THead (Flat Appl) t0 (THead (Bind x0) x1 x2)) (THead (Flat Appl) t0 (THeads 
+(Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) (lift (S O) O v) t)))) c 
+(pr3_thin_dx c (THeads (Flat Appl) t1 (THead (Bind b) u (THead (Flat Appl) 
+(lift (S O) O v) t))) (THead (Bind x0) x1 x2) (H0 c (THead (Bind x0) x1 x2) 
+H6 (\lambda (H11: (iso (THeads (Flat Appl) t1 (THead (Flat Appl) v (THead 
+(Bind b) u t))) (THead (Bind x0) x1 x2))).(\lambda (P: 
+Prop).(iso_flats_flat_bind_false Appl Appl x0 x1 v x2 (THead (Bind b) u t) t1 
+H11 P)))) t0 Appl) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S O) O t0) 
+x2)) (pr3_pr2 c (THead (Flat Appl) t0 (THead (Bind x0) x1 x2)) (THead (Bind 
+x0) x1 (THead (Flat Appl) (lift (S O) O t0) x2)) (pr2_free c (THead (Flat 
+Appl) t0 (THead (Bind x0) x1 x2)) (THead (Bind x0) x1 (THead (Flat Appl) 
+(lift (S O) O t0) x2)) (pr0_upsilon x0 H5 t0 t0 (pr0_refl t0) x1 x1 (pr0_refl 
+x1) x2 x2 (pr0_refl x2))))) (THead (Bind x0) x1 (THead (Flat Appl) (lift (S 
+O) O x4) x2)) (pr3_head_12 c x1 x1 (pr3_refl c x1) (Bind x0) (THead (Flat 
+Appl) (lift (S O) O t0) x2) (THead (Flat Appl) (lift (S O) O x4) x2) 
+(pr3_head_12 (CHead c (Bind x0) x1) (lift (S O) O t0) (lift (S O) O x4) 
+(pr3_lift (CHead c (Bind x0) x1) c (S O) O (drop_drop (Bind x0) O c c 
+(drop_refl c) x1) t0 x4 H8) (Flat Appl) x2 x2 (pr3_refl (CHead (CHead c (Bind 
+x0) x1) (Flat Appl) (lift (S O) O x4)) x2)))) u2 (pr3_t (THead (Bind x0) x5 
+(THead (Flat Appl) (lift (S O) O x4) x3)) (THead (Bind x0) x1 (THead (Flat 
+Appl) (lift (S O) O x4) x2)) c (pr3_head_12 c x1 x5 H9 (Bind x0) (THead (Flat 
+Appl) (lift (S O) O x4) x2) (THead (Flat Appl) (lift (S O) O x4) x3) 
+(pr3_thin_dx (CHead c (Bind x0) x5) x2 x3 H10 (lift (S O) O x4) Appl)) u2 
+H7)))))))))))))) H4)) H3))))))))) vs)))))).
+
+theorem pr3_iso_appls_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (vs: TList).(\forall (u: 
+T).(\forall (t: T).(let u1 \def (THeads (Flat Appl) vs (THead (Bind b) u t)) 
+in (\forall (c: C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to 
+(\forall (P: Prop).P))) \to (pr3 c (THead (Bind b) u (THeads (Flat Appl) 
+(lifts (S O) O vs) t)) u2))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (vs: 
+TList).(tlist_ind_rew (\lambda (t: TList).(\forall (u: T).(\forall (t0: 
+T).(let u1 \def (THeads (Flat Appl) t (THead (Bind b) u t0)) in (\forall (c: 
+C).(\forall (u2: T).((pr3 c u1 u2) \to ((((iso u1 u2) \to (\forall (P: 
+Prop).P))) \to (pr3 c (THead (Bind b) u (THeads (Flat Appl) (lifts (S O) O t) 
+t0)) u2))))))))) (\lambda (u: T).(\lambda (t: T).(\lambda (c: C).(\lambda 
+(u2: T).(\lambda (H0: (pr3 c (THead (Bind b) u t) u2)).(\lambda (_: (((iso 
+(THead (Bind b) u t) u2) \to (\forall (P: Prop).P)))).H0)))))) (\lambda (ts: 
+TList).(\lambda (t: T).(\lambda (H0: ((\forall (u: T).(\forall (t0: 
+T).(\forall (c: C).(\forall (u2: T).((pr3 c (THeads (Flat Appl) ts (THead 
+(Bind b) u t0)) u2) \to ((((iso (THeads (Flat Appl) ts (THead (Bind b) u t0)) 
+u2) \to (\forall (P: Prop).P))) \to (pr3 c (THead (Bind b) u (THeads (Flat 
+Appl) (lifts (S O) O ts) t0)) u2))))))))).(\lambda (u: T).(\lambda (t0: 
+T).(\lambda (c: C).(\lambda (u2: T).(\lambda (H1: (pr3 c (THeads (Flat Appl) 
+(TApp ts t) (THead (Bind b) u t0)) u2)).(\lambda (H2: (((iso (THeads (Flat 
+Appl) (TApp ts t) (THead (Bind b) u t0)) u2) \to (\forall (P: 
+Prop).P)))).(eq_ind_r TList (TApp (lifts (S O) O ts) (lift (S O) O t)) 
+(\lambda (t1: TList).(pr3 c (THead (Bind b) u (THeads (Flat Appl) t1 t0)) 
+u2)) (eq_ind_r T (THeads (Flat Appl) (lifts (S O) O ts) (THead (Flat Appl) 
+(lift (S O) O t) t0)) (\lambda (t1: T).(pr3 c (THead (Bind b) u t1) u2)) (let 
+H3 \def (eq_ind T (THeads (Flat Appl) (TApp ts t) (THead (Bind b) u t0)) 
+(\lambda (t1: T).(pr3 c t1 u2)) H1 (THeads (Flat Appl) ts (THead (Flat Appl) 
+t (THead (Bind b) u t0))) (theads_tapp (Flat Appl) ts t (THead (Bind b) u 
+t0))) in (let H4 \def (eq_ind T (THeads (Flat Appl) (TApp ts t) (THead (Bind 
+b) u t0)) (\lambda (t1: T).((iso t1 u2) \to (\forall (P: Prop).P))) H2 
+(THeads (Flat Appl) ts (THead (Flat Appl) t (THead (Bind b) u t0))) 
+(theads_tapp (Flat Appl) ts t (THead (Bind b) u t0))) in ((match ts in TList 
+return (\lambda (t1: TList).(((\forall (u0: T).(\forall (t2: T).(\forall (c0: 
+C).(\forall (u3: T).((pr3 c0 (THeads (Flat Appl) t1 (THead (Bind b) u0 t2)) 
+u3) \to ((((iso (THeads (Flat Appl) t1 (THead (Bind b) u0 t2)) u3) \to 
+(\forall (P: Prop).P))) \to (pr3 c0 (THead (Bind b) u0 (THeads (Flat Appl) 
+(lifts (S O) O t1) t2)) u3)))))))) \to ((pr3 c (THeads (Flat Appl) t1 (THead 
+(Flat Appl) t (THead (Bind b) u t0))) u2) \to ((((iso (THeads (Flat Appl) t1 
+(THead (Flat Appl) t (THead (Bind b) u t0))) u2) \to (\forall (P: Prop).P))) 
+\to (pr3 c (THead (Bind b) u (THeads (Flat Appl) (lifts (S O) O t1) (THead 
+(Flat Appl) (lift (S O) O t) t0))) u2))))) with [TNil \Rightarrow (\lambda 
+(_: ((\forall (u0: T).(\forall (t1: T).(\forall (c0: C).(\forall (u3: 
+T).((pr3 c0 (THeads (Flat Appl) TNil (THead (Bind b) u0 t1)) u3) \to ((((iso 
+(THeads (Flat Appl) TNil (THead (Bind b) u0 t1)) u3) \to (\forall (P: 
+Prop).P))) \to (pr3 c0 (THead (Bind b) u0 (THeads (Flat Appl) (lifts (S O) O 
+TNil) t1)) u3))))))))).(\lambda (H6: (pr3 c (THeads (Flat Appl) TNil (THead 
+(Flat Appl) t (THead (Bind b) u t0))) u2)).(\lambda (H7: (((iso (THeads (Flat 
+Appl) TNil (THead (Flat Appl) t (THead (Bind b) u t0))) u2) \to (\forall (P: 
+Prop).P)))).(pr3_iso_appl_bind b H t u t0 c u2 H6 H7)))) | (TCons t1 t2) 
+\Rightarrow (\lambda (H5: ((\forall (u0: T).(\forall (t3: T).(\forall (c0: 
+C).(\forall (u3: T).((pr3 c0 (THeads (Flat Appl) (TCons t1 t2) (THead (Bind 
+b) u0 t3)) u3) \to ((((iso (THeads (Flat Appl) (TCons t1 t2) (THead (Bind b) 
+u0 t3)) u3) \to (\forall (P: Prop).P))) \to (pr3 c0 (THead (Bind b) u0 
+(THeads (Flat Appl) (lifts (S O) O (TCons t1 t2)) t3)) u3))))))))).(\lambda 
+(H6: (pr3 c (THeads (Flat Appl) (TCons t1 t2) (THead (Flat Appl) t (THead 
+(Bind b) u t0))) u2)).(\lambda (H7: (((iso (THeads (Flat Appl) (TCons t1 t2) 
+(THead (Flat Appl) t (THead (Bind b) u t0))) u2) \to (\forall (P: 
+Prop).P)))).(H5 u (THead (Flat Appl) (lift (S O) O t) t0) c u2 
+(pr3_iso_appls_appl_bind b H t u t0 (TCons t1 t2) c u2 H6 H7) (\lambda (H8: 
+(iso (THeads (Flat Appl) (TCons t1 t2) (THead (Bind b) u (THead (Flat Appl) 
+(lift (S O) O t) t0))) u2)).(\lambda (P: Prop).(H7 (iso_trans (THeads (Flat 
+Appl) (TCons t1 t2) (THead (Flat Appl) t (THead (Bind b) u t0))) (THeads 
+(Flat Appl) (TCons t1 t2) (THead (Bind b) u (THead (Flat Appl) (lift (S O) O 
+t) t0))) (iso_head t1 t1 (THeads (Flat Appl) t2 (THead (Flat Appl) t (THead 
+(Bind b) u t0))) (THeads (Flat Appl) t2 (THead (Bind b) u (THead (Flat Appl) 
+(lift (S O) O t) t0))) (Flat Appl)) u2 H8) P)))))))]) H0 H3 H4))) (THeads 
+(Flat Appl) (TApp (lifts (S O) O ts) (lift (S O) O t)) t0) (theads_tapp (Flat 
+Appl) (lifts (S O) O ts) (lift (S O) O t) t0)) (lifts (S O) O (TApp ts t)) 
+(lifts_tapp (S O) O t ts))))))))))) vs))).
+
+theorem sn3_cpr3_trans:
+ \forall (c: C).(\forall (u1: T).(\forall (u2: T).((pr3 c u1 u2) \to (\forall 
+(k: K).(\forall (t: T).((sn3 (CHead c k u1) t) \to (sn3 (CHead c k u2) 
+t)))))))
+\def
+ \lambda (c: C).(\lambda (u1: T).(\lambda (u2: T).(\lambda (H: (pr3 c u1 
+u2)).(\lambda (k: K).(\lambda (t: T).(\lambda (H0: (sn3 (CHead c k u1) 
+t)).(sn3_ind (CHead c k u1) (\lambda (t0: T).(sn3 (CHead c k u2) t0)) 
+(\lambda (t1: T).(\lambda (_: ((\forall (t2: T).((((eq T t1 t2) \to (\forall 
+(P: Prop).P))) \to ((pr3 (CHead c k u1) t1 t2) \to (sn3 (CHead c k u1) 
+t2)))))).(\lambda (H2: ((\forall (t2: T).((((eq T t1 t2) \to (\forall (P: 
+Prop).P))) \to ((pr3 (CHead c k u1) t1 t2) \to (sn3 (CHead c k u2) 
+t2)))))).(sn3_sing (CHead c k u2) t1 (\lambda (t2: T).(\lambda (H3: (((eq T 
+t1 t2) \to (\forall (P: Prop).P)))).(\lambda (H4: (pr3 (CHead c k u2) t1 
+t2)).(H2 t2 H3 (pr3_pr3_pr3_t c u1 u2 H t1 t2 k H4))))))))) t H0))))))).
+
+theorem sn3_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u: 
+T).((sn3 c u) \to (\forall (t: T).((sn3 (CHead c (Bind b) u) t) \to (sn3 c 
+(THead (Bind b) u t))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (c: C).(\lambda 
+(u: T).(\lambda (H0: (sn3 c u)).(sn3_ind c (\lambda (t: T).(\forall (t0: 
+T).((sn3 (CHead c (Bind b) t) t0) \to (sn3 c (THead (Bind b) t t0))))) 
+(\lambda (t1: T).(\lambda (_: ((\forall (t2: T).((((eq T t1 t2) \to (\forall 
+(P: Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c t2)))))).(\lambda (H2: ((\forall 
+(t2: T).((((eq T t1 t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to 
+(\forall (t: T).((sn3 (CHead c (Bind b) t2) t) \to (sn3 c (THead (Bind b) t2 
+t))))))))).(\lambda (t: T).(\lambda (H3: (sn3 (CHead c (Bind b) t1) 
+t)).(sn3_ind (CHead c (Bind b) t1) (\lambda (t0: T).(sn3 c (THead (Bind b) t1 
+t0))) (\lambda (t2: T).(\lambda (H4: ((\forall (t3: T).((((eq T t2 t3) \to 
+(\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to (sn3 
+(CHead c (Bind b) t1) t3)))))).(\lambda (H5: ((\forall (t3: T).((((eq T t2 
+t3) \to (\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to 
+(sn3 c (THead (Bind b) t1 t3))))))).(sn3_sing c (THead (Bind b) t1 t2) 
+(\lambda (t3: T).(\lambda (H6: (((eq T (THead (Bind b) t1 t2) t3) \to 
+(\forall (P: Prop).P)))).(\lambda (H7: (pr3 c (THead (Bind b) t1 t2) 
+t3)).(let H_x \def (pr3_gen_bind b H c t1 t2 t3 H7) in (let H8 \def H_x in 
+(or_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind b) 
+u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: 
+T).(\lambda (t4: T).(pr3 (CHead c (Bind b) t1) t2 t4)))) (pr3 (CHead c (Bind 
+b) t1) t2 (lift (S O) O t3)) (sn3 c t3) (\lambda (H9: (ex3_2 T T (\lambda 
+(u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind b) u2 t4)))) (\lambda (u2: 
+T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr3 
+(CHead c (Bind b) t1) t2 t4))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda 
+(t4: T).(eq T t3 (THead (Bind b) u2 t4)))) (\lambda (u2: T).(\lambda (_: 
+T).(pr3 c t1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr3 (CHead c (Bind b) 
+t1) t2 t4))) (sn3 c t3) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H10: (eq 
+T t3 (THead (Bind b) x0 x1))).(\lambda (H11: (pr3 c t1 x0)).(\lambda (H12: 
+(pr3 (CHead c (Bind b) t1) t2 x1)).(let H13 \def (eq_ind T t3 (\lambda (t0: 
+T).((eq T (THead (Bind b) t1 t2) t0) \to (\forall (P: Prop).P))) H6 (THead 
+(Bind b) x0 x1) H10) in (eq_ind_r T (THead (Bind b) x0 x1) (\lambda (t0: 
+T).(sn3 c t0)) (let H_x0 \def (term_dec t1 x0) in (let H14 \def H_x0 in 
+(or_ind (eq T t1 x0) ((eq T t1 x0) \to (\forall (P: Prop).P)) (sn3 c (THead 
+(Bind b) x0 x1)) (\lambda (H15: (eq T t1 x0)).(let H16 \def (eq_ind_r T x0 
+(\lambda (t0: T).((eq T (THead (Bind b) t1 t2) (THead (Bind b) t0 x1)) \to 
+(\forall (P: Prop).P))) H13 t1 H15) in (let H17 \def (eq_ind_r T x0 (\lambda 
+(t0: T).(pr3 c t1 t0)) H11 t1 H15) in (eq_ind T t1 (\lambda (t0: T).(sn3 c 
+(THead (Bind b) t0 x1))) (let H_x1 \def (term_dec t2 x1) in (let H18 \def 
+H_x1 in (or_ind (eq T t2 x1) ((eq T t2 x1) \to (\forall (P: Prop).P)) (sn3 c 
+(THead (Bind b) t1 x1)) (\lambda (H19: (eq T t2 x1)).(let H20 \def (eq_ind_r 
+T x1 (\lambda (t0: T).((eq T (THead (Bind b) t1 t2) (THead (Bind b) t1 t0)) 
+\to (\forall (P: Prop).P))) H16 t2 H19) in (let H21 \def (eq_ind_r T x1 
+(\lambda (t0: T).(pr3 (CHead c (Bind b) t1) t2 t0)) H12 t2 H19) in (eq_ind T 
+t2 (\lambda (t0: T).(sn3 c (THead (Bind b) t1 t0))) (H20 (refl_equal T (THead 
+(Bind b) t1 t2)) (sn3 c (THead (Bind b) t1 t2))) x1 H19)))) (\lambda (H19: 
+(((eq T t2 x1) \to (\forall (P: Prop).P)))).(H5 x1 H19 H12)) H18))) x0 
+H15)))) (\lambda (H15: (((eq T t1 x0) \to (\forall (P: Prop).P)))).(let H_x1 
+\def (term_dec t2 x1) in (let H16 \def H_x1 in (or_ind (eq T t2 x1) ((eq T t2 
+x1) \to (\forall (P: Prop).P)) (sn3 c (THead (Bind b) x0 x1)) (\lambda (H17: 
+(eq T t2 x1)).(let H18 \def (eq_ind_r T x1 (\lambda (t0: T).(pr3 (CHead c 
+(Bind b) t1) t2 t0)) H12 t2 H17) in (eq_ind T t2 (\lambda (t0: T).(sn3 c 
+(THead (Bind b) x0 t0))) (H2 x0 H15 H11 t2 (sn3_cpr3_trans c t1 x0 H11 (Bind 
+b) t2 (sn3_sing (CHead c (Bind b) t1) t2 H4))) x1 H17))) (\lambda (H17: (((eq 
+T t2 x1) \to (\forall (P: Prop).P)))).(H2 x0 H15 H11 x1 (sn3_cpr3_trans c t1 
+x0 H11 (Bind b) x1 (H4 x1 H17 H12)))) H16)))) H14))) t3 H10))))))) H9)) 
+(\lambda (H9: (pr3 (CHead c (Bind b) t1) t2 (lift (S O) O t3))).(sn3_gen_lift 
+(CHead c (Bind b) t1) t3 (S O) O (sn3_pr3_trans (CHead c (Bind b) t1) t2 
+(sn3_pr2_intro (CHead c (Bind b) t1) t2 (\lambda (t0: T).(\lambda (H10: (((eq 
+T t2 t0) \to (\forall (P: Prop).P)))).(\lambda (H11: (pr2 (CHead c (Bind b) 
+t1) t2 t0)).(H4 t0 H10 (pr3_pr2 (CHead c (Bind b) t1) t2 t0 H11)))))) (lift 
+(S O) O t3) H9) c (drop_drop (Bind b) O c c (drop_refl c) t1))) H8)))))))))) 
+t H3)))))) u H0))))).
+
+theorem nf3_appl_abbr:
+ \forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c 
+(CHead d (Bind Abbr) w)) \to (\forall (v: T).((sn3 c (THead (Flat Appl) v 
+(lift (S i) O w))) \to (sn3 c (THead (Flat Appl) v (TLRef i)))))))))
+\def
+ \lambda (c: C).(\lambda (d: C).(\lambda (w: T).(\lambda (i: nat).(\lambda 
+(H: (getl i c (CHead d (Bind Abbr) w))).(\lambda (v: T).(\lambda (H0: (sn3 c 
+(THead (Flat Appl) v (lift (S i) O w)))).(insert_eq T (THead (Flat Appl) v 
+(lift (S i) O w)) (\lambda (t: T).(sn3 c t)) (sn3 c (THead (Flat Appl) v 
+(TLRef i))) (\lambda (y: T).(\lambda (H1: (sn3 c y)).(unintro T v (\lambda 
+(t: T).((eq T y (THead (Flat Appl) t (lift (S i) O w))) \to (sn3 c (THead 
+(Flat Appl) t (TLRef i))))) (sn3_ind c (\lambda (t: T).(\forall (x: T).((eq T 
+t (THead (Flat Appl) x (lift (S i) O w))) \to (sn3 c (THead (Flat Appl) x 
+(TLRef i)))))) (\lambda (t1: T).(\lambda (H2: ((\forall (t2: T).((((eq T t1 
+t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c 
+t2)))))).(\lambda (H3: ((\forall (t2: T).((((eq T t1 t2) \to (\forall (P: 
+Prop).P))) \to ((pr3 c t1 t2) \to (\forall (x: T).((eq T t2 (THead (Flat 
+Appl) x (lift (S i) O w))) \to (sn3 c (THead (Flat Appl) x (TLRef 
+i)))))))))).(\lambda (x: T).(\lambda (H4: (eq T t1 (THead (Flat Appl) x (lift 
+(S i) O w)))).(let H5 \def (eq_ind T t1 (\lambda (t: T).(\forall (t2: 
+T).((((eq T t t2) \to (\forall (P: Prop).P))) \to ((pr3 c t t2) \to (\forall 
+(x0: T).((eq T t2 (THead (Flat Appl) x0 (lift (S i) O w))) \to (sn3 c (THead 
+(Flat Appl) x0 (TLRef i))))))))) H3 (THead (Flat Appl) x (lift (S i) O w)) 
+H4) in (let H6 \def (eq_ind T t1 (\lambda (t: T).(\forall (t2: T).((((eq T t 
+t2) \to (\forall (P: Prop).P))) \to ((pr3 c t t2) \to (sn3 c t2))))) H2 
+(THead (Flat Appl) x (lift (S i) O w)) H4) in (sn3_pr2_intro c (THead (Flat 
+Appl) x (TLRef i)) (\lambda (t2: T).(\lambda (H7: (((eq T (THead (Flat Appl) 
+x (TLRef i)) t2) \to (\forall (P: Prop).P)))).(\lambda (H8: (pr2 c (THead 
+(Flat Appl) x (TLRef i)) t2)).(let H9 \def (pr2_gen_appl c x (TLRef i) t2 H8) 
+in (or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead 
+(Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) 
+(\lambda (_: T).(\lambda (t3: T).(pr2 c (TLRef i) t3)))) (ex4_4 T T T T 
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T 
+(TLRef i) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: 
+T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 t3)))))) 
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x 
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t3: 
+T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 t3)))))))) 
+(ex6_6 B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: 
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(eq T (TLRef i) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda 
+(_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq 
+T t2 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) 
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: 
+T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: 
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2)))))))) 
+(sn3 c t2) (\lambda (H10: (ex3_2 T T (\lambda (u2: T).(\lambda (t3: T).(eq T 
+t2 (THead (Flat Appl) u2 t3)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x 
+u2))) (\lambda (_: T).(\lambda (t3: T).(pr2 c (TLRef i) t3))))).(ex3_2_ind T 
+T (\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Flat Appl) u2 t3)))) 
+(\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) (\lambda (_: T).(\lambda (t3: 
+T).(pr2 c (TLRef i) t3))) (sn3 c t2) (\lambda (x0: T).(\lambda (x1: 
+T).(\lambda (H11: (eq T t2 (THead (Flat Appl) x0 x1))).(\lambda (H12: (pr2 c 
+x x0)).(\lambda (H13: (pr2 c (TLRef i) x1)).(let H14 \def (eq_ind T t2 
+(\lambda (t: T).((eq T (THead (Flat Appl) x (TLRef i)) t) \to (\forall (P: 
+Prop).P))) H7 (THead (Flat Appl) x0 x1) H11) in (eq_ind_r T (THead (Flat 
+Appl) x0 x1) (\lambda (t: T).(sn3 c t)) (let H15 \def (pr2_gen_lref c x1 i 
+H13) in (or_ind (eq T x1 (TLRef i)) (ex2_2 C T (\lambda (d0: C).(\lambda (u: 
+T).(getl i c (CHead d0 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: T).(eq 
+T x1 (lift (S i) O u))))) (sn3 c (THead (Flat Appl) x0 x1)) (\lambda (H16: 
+(eq T x1 (TLRef i))).(let H17 \def (eq_ind T x1 (\lambda (t: T).((eq T (THead 
+(Flat Appl) x (TLRef i)) (THead (Flat Appl) x0 t)) \to (\forall (P: 
+Prop).P))) H14 (TLRef i) H16) in (eq_ind_r T (TLRef i) (\lambda (t: T).(sn3 c 
+(THead (Flat Appl) x0 t))) (let H_x \def (term_dec x x0) in (let H18 \def H_x 
+in (or_ind (eq T x x0) ((eq T x x0) \to (\forall (P: Prop).P)) (sn3 c (THead 
+(Flat Appl) x0 (TLRef i))) (\lambda (H19: (eq T x x0)).(let H20 \def 
+(eq_ind_r T x0 (\lambda (t: T).((eq T (THead (Flat Appl) x (TLRef i)) (THead 
+(Flat Appl) t (TLRef i))) \to (\forall (P: Prop).P))) H17 x H19) in (let H21 
+\def (eq_ind_r T x0 (\lambda (t: T).(pr2 c x t)) H12 x H19) in (eq_ind T x 
+(\lambda (t: T).(sn3 c (THead (Flat Appl) t (TLRef i)))) (H20 (refl_equal T 
+(THead (Flat Appl) x (TLRef i))) (sn3 c (THead (Flat Appl) x (TLRef i)))) x0 
+H19)))) (\lambda (H19: (((eq T x x0) \to (\forall (P: Prop).P)))).(H5 (THead 
+(Flat Appl) x0 (lift (S i) O w)) (\lambda (H20: (eq T (THead (Flat Appl) x 
+(lift (S i) O w)) (THead (Flat Appl) x0 (lift (S i) O w)))).(\lambda (P: 
+Prop).(let H21 \def (f_equal T T (\lambda (e: T).(match e in T return 
+(\lambda (_: T).T) with [(TSort _) \Rightarrow x | (TLRef _) \Rightarrow x | 
+(THead _ t _) \Rightarrow t])) (THead (Flat Appl) x (lift (S i) O w)) (THead 
+(Flat Appl) x0 (lift (S i) O w)) H20) in (let H22 \def (eq_ind_r T x0 
+(\lambda (t: T).((eq T x t) \to (\forall (P0: Prop).P0))) H19 x H21) in (let 
+H23 \def (eq_ind_r T x0 (\lambda (t: T).(pr2 c x t)) H12 x H21) in (H22 
+(refl_equal T x) P)))))) (pr3_pr2 c (THead (Flat Appl) x (lift (S i) O w)) 
+(THead (Flat Appl) x0 (lift (S i) O w)) (pr2_head_1 c x x0 H12 (Flat Appl) 
+(lift (S i) O w))) x0 (refl_equal T (THead (Flat Appl) x0 (lift (S i) O 
+w))))) H18))) x1 H16))) (\lambda (H16: (ex2_2 C T (\lambda (d0: C).(\lambda 
+(u: T).(getl i c (CHead d0 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: 
+T).(eq T x1 (lift (S i) O u)))))).(ex2_2_ind C T (\lambda (d0: C).(\lambda 
+(u: T).(getl i c (CHead d0 (Bind Abbr) u)))) (\lambda (_: C).(\lambda (u: 
+T).(eq T x1 (lift (S i) O u)))) (sn3 c (THead (Flat Appl) x0 x1)) (\lambda 
+(x2: C).(\lambda (x3: T).(\lambda (H17: (getl i c (CHead x2 (Bind Abbr) 
+x3))).(\lambda (H18: (eq T x1 (lift (S i) O x3))).(let H19 \def (eq_ind T x1 
+(\lambda (t: T).((eq T (THead (Flat Appl) x (TLRef i)) (THead (Flat Appl) x0 
+t)) \to (\forall (P: Prop).P))) H14 (lift (S i) O x3) H18) in (eq_ind_r T 
+(lift (S i) O x3) (\lambda (t: T).(sn3 c (THead (Flat Appl) x0 t))) (let H20 
+\def (eq_ind C (CHead d (Bind Abbr) w) (\lambda (c0: C).(getl i c c0)) H 
+(CHead x2 (Bind Abbr) x3) (getl_mono c (CHead d (Bind Abbr) w) i H (CHead x2 
+(Bind Abbr) x3) H17)) in (let H21 \def (f_equal C C (\lambda (e: C).(match e 
+in C return (\lambda (_: C).C) with [(CSort _) \Rightarrow d | (CHead c0 _ _) 
+\Rightarrow c0])) (CHead d (Bind Abbr) w) (CHead x2 (Bind Abbr) x3) 
+(getl_mono c (CHead d (Bind Abbr) w) i H (CHead x2 (Bind Abbr) x3) H17)) in 
+((let H22 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda (_: 
+C).T) with [(CSort _) \Rightarrow w | (CHead _ _ t) \Rightarrow t])) (CHead d 
+(Bind Abbr) w) (CHead x2 (Bind Abbr) x3) (getl_mono c (CHead d (Bind Abbr) w) 
+i H (CHead x2 (Bind Abbr) x3) H17)) in (\lambda (H23: (eq C d x2)).(let H24 
+\def (eq_ind_r T x3 (\lambda (t: T).(getl i c (CHead x2 (Bind Abbr) t))) H20 
+w H22) in (eq_ind T w (\lambda (t: T).(sn3 c (THead (Flat Appl) x0 (lift (S 
+i) O t)))) (let H25 \def (eq_ind_r C x2 (\lambda (c0: C).(getl i c (CHead c0 
+(Bind Abbr) w))) H24 d H23) in (let H_x \def (term_dec x x0) in (let H26 \def 
+H_x in (or_ind (eq T x x0) ((eq T x x0) \to (\forall (P: Prop).P)) (sn3 c 
+(THead (Flat Appl) x0 (lift (S i) O w))) (\lambda (H27: (eq T x x0)).(let H28 
+\def (eq_ind_r T x0 (\lambda (t: T).(pr2 c x t)) H12 x H27) in (eq_ind T x 
+(\lambda (t: T).(sn3 c (THead (Flat Appl) t (lift (S i) O w)))) (sn3_sing c 
+(THead (Flat Appl) x (lift (S i) O w)) H6) x0 H27))) (\lambda (H27: (((eq T x 
+x0) \to (\forall (P: Prop).P)))).(H6 (THead (Flat Appl) x0 (lift (S i) O w)) 
+(\lambda (H28: (eq T (THead (Flat Appl) x (lift (S i) O w)) (THead (Flat 
+Appl) x0 (lift (S i) O w)))).(\lambda (P: Prop).(let H29 \def (f_equal T T 
+(\lambda (e: T).(match e in T return (\lambda (_: T).T) with [(TSort _) 
+\Rightarrow x | (TLRef _) \Rightarrow x | (THead _ t _) \Rightarrow t])) 
+(THead (Flat Appl) x (lift (S i) O w)) (THead (Flat Appl) x0 (lift (S i) O 
+w)) H28) in (let H30 \def (eq_ind_r T x0 (\lambda (t: T).((eq T x t) \to 
+(\forall (P0: Prop).P0))) H27 x H29) in (let H31 \def (eq_ind_r T x0 (\lambda 
+(t: T).(pr2 c x t)) H12 x H29) in (H30 (refl_equal T x) P)))))) (pr3_pr2 c 
+(THead (Flat Appl) x (lift (S i) O w)) (THead (Flat Appl) x0 (lift (S i) O 
+w)) (pr2_head_1 c x x0 H12 (Flat Appl) (lift (S i) O w))))) H26)))) x3 
+H22)))) H21))) x1 H18)))))) H16)) H15)) t2 H11))))))) H10)) (\lambda (H10: 
+(ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: 
+T).(eq T (TLRef i) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda 
+(_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead (Bind Abbr) u2 
+t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: 
+T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda 
+(t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) u) z1 
+t3))))))))).(ex4_4_ind T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (_: T).(eq T (TLRef i) (THead (Bind Abst) y1 z1)))))) (\lambda 
+(_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t3: T).(eq T t2 (THead 
+(Bind Abbr) u2 t3)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: 
+T).(\lambda (_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda 
+(_: T).(\lambda (t3: T).(\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind 
+b) u) z1 t3))))))) (sn3 c t2) (\lambda (x0: T).(\lambda (x1: T).(\lambda (x2: 
+T).(\lambda (x3: T).(\lambda (H11: (eq T (TLRef i) (THead (Bind Abst) x0 
+x1))).(\lambda (H12: (eq T t2 (THead (Bind Abbr) x2 x3))).(\lambda (_: (pr2 c 
+x x2)).(\lambda (_: ((\forall (b: B).(\forall (u: T).(pr2 (CHead c (Bind b) 
+u) x1 x3))))).(let H15 \def (eq_ind T t2 (\lambda (t: T).((eq T (THead (Flat 
+Appl) x (TLRef i)) t) \to (\forall (P: Prop).P))) H7 (THead (Bind Abbr) x2 
+x3) H12) in (eq_ind_r T (THead (Bind Abbr) x2 x3) (\lambda (t: T).(sn3 c t)) 
+(let H16 \def (eq_ind T (TLRef i) (\lambda (ee: T).(match ee in T return 
+(\lambda (_: T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) 
+\Rightarrow True | (THead _ _ _) \Rightarrow False])) I (THead (Bind Abst) x0 
+x1) H11) in (False_ind (sn3 c (THead (Bind Abbr) x2 x3)) H16)) t2 
+H12)))))))))) H10)) (\lambda (H10: (ex6_6 B T T T T T (\lambda (b: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(not (eq B b Abst)))))))) (\lambda (b: B).(\lambda (y1: T).(\lambda 
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (TLRef i) 
+(THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t2 (THead (Bind 
+b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda 
+(_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) 
+(\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))))).(ex6_6_ind 
+B T T T T T (\lambda (b: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(not (eq B b Abst)))))))) (\lambda (b: 
+B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(eq T (TLRef i) (THead (Bind b) y1 z1)))))))) (\lambda (b: B).(\lambda 
+(_: T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq 
+T t2 (THead (Bind b) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) 
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: 
+T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 
+y2))))))) (\lambda (b: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: 
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b) y2) z1 z2))))))) 
+(sn3 c t2) (\lambda (x0: B).(\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: 
+T).(\lambda (x4: T).(\lambda (x5: T).(\lambda (_: (not (eq B x0 
+Abst))).(\lambda (H12: (eq T (TLRef i) (THead (Bind x0) x1 x2))).(\lambda 
+(H13: (eq T t2 (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) 
+x3)))).(\lambda (_: (pr2 c x x4)).(\lambda (_: (pr2 c x1 x5)).(\lambda (_: 
+(pr2 (CHead c (Bind x0) x5) x2 x3)).(let H17 \def (eq_ind T t2 (\lambda (t: 
+T).((eq T (THead (Flat Appl) x (TLRef i)) t) \to (\forall (P: Prop).P))) H7 
+(THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) H13) in 
+(eq_ind_r T (THead (Bind x0) x5 (THead (Flat Appl) (lift (S O) O x4) x3)) 
+(\lambda (t: T).(sn3 c t)) (let H18 \def (eq_ind T (TLRef i) (\lambda (ee: 
+T).(match ee in T return (\lambda (_: T).Prop) with [(TSort _) \Rightarrow 
+False | (TLRef _) \Rightarrow True | (THead _ _ _) \Rightarrow False])) I 
+(THead (Bind x0) x1 x2) H12) in (False_ind (sn3 c (THead (Bind x0) x5 (THead 
+(Flat Appl) (lift (S O) O x4) x3))) H18)) t2 H13)))))))))))))) H10)) 
+H9))))))))))))) y H1)))) H0))))))).
+
+theorem sn3_appl_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u: 
+T).((sn3 c u) \to (\forall (t: T).(\forall (v: T).((sn3 (CHead c (Bind b) u) 
+(THead (Flat Appl) (lift (S O) O v) t)) \to (sn3 c (THead (Flat Appl) v 
+(THead (Bind b) u t))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (c: C).(\lambda 
+(u: T).(\lambda (H0: (sn3 c u)).(sn3_ind c (\lambda (t: T).(\forall (t0: 
+T).(\forall (v: T).((sn3 (CHead c (Bind b) t) (THead (Flat Appl) (lift (S O) 
+O v) t0)) \to (sn3 c (THead (Flat Appl) v (THead (Bind b) t t0))))))) 
+(\lambda (t1: T).(\lambda (H1: ((\forall (t2: T).((((eq T t1 t2) \to (\forall 
+(P: Prop).P))) \to ((pr3 c t1 t2) \to (sn3 c t2)))))).(\lambda (H2: ((\forall 
+(t2: T).((((eq T t1 t2) \to (\forall (P: Prop).P))) \to ((pr3 c t1 t2) \to 
+(\forall (t: T).(\forall (v: T).((sn3 (CHead c (Bind b) t2) (THead (Flat 
+Appl) (lift (S O) O v) t)) \to (sn3 c (THead (Flat Appl) v (THead (Bind b) t2 
+t))))))))))).(\lambda (t: T).(\lambda (v: T).(\lambda (H3: (sn3 (CHead c 
+(Bind b) t1) (THead (Flat Appl) (lift (S O) O v) t))).(insert_eq T (THead 
+(Flat Appl) (lift (S O) O v) t) (\lambda (t0: T).(sn3 (CHead c (Bind b) t1) 
+t0)) (sn3 c (THead (Flat Appl) v (THead (Bind b) t1 t))) (\lambda (y: 
+T).(\lambda (H4: (sn3 (CHead c (Bind b) t1) y)).(unintro T t (\lambda (t0: 
+T).((eq T y (THead (Flat Appl) (lift (S O) O v) t0)) \to (sn3 c (THead (Flat 
+Appl) v (THead (Bind b) t1 t0))))) (unintro T v (\lambda (t0: T).(\forall (x: 
+T).((eq T y (THead (Flat Appl) (lift (S O) O t0) x)) \to (sn3 c (THead (Flat 
+Appl) t0 (THead (Bind b) t1 x)))))) (sn3_ind (CHead c (Bind b) t1) (\lambda 
+(t0: T).(\forall (x: T).(\forall (x0: T).((eq T t0 (THead (Flat Appl) (lift 
+(S O) O x) x0)) \to (sn3 c (THead (Flat Appl) x (THead (Bind b) t1 x0))))))) 
+(\lambda (t2: T).(\lambda (H5: ((\forall (t3: T).((((eq T t2 t3) \to (\forall 
+(P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to (sn3 (CHead c (Bind 
+b) t1) t3)))))).(\lambda (H6: ((\forall (t3: T).((((eq T t2 t3) \to (\forall 
+(P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t2 t3) \to (\forall (x: 
+T).(\forall (x0: T).((eq T t3 (THead (Flat Appl) (lift (S O) O x) x0)) \to 
+(sn3 c (THead (Flat Appl) x (THead (Bind b) t1 x0))))))))))).(\lambda (x: 
+T).(\lambda (x0: T).(\lambda (H7: (eq T t2 (THead (Flat Appl) (lift (S O) O 
+x) x0))).(let H8 \def (eq_ind T t2 (\lambda (t0: T).(\forall (t3: T).((((eq T 
+t0 t3) \to (\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b) t1) t0 t3) \to 
+(\forall (x1: T).(\forall (x2: T).((eq T t3 (THead (Flat Appl) (lift (S O) O 
+x1) x2)) \to (sn3 c (THead (Flat Appl) x1 (THead (Bind b) t1 x2)))))))))) H6 
+(THead (Flat Appl) (lift (S O) O x) x0) H7) in (let H9 \def (eq_ind T t2 
+(\lambda (t0: T).(\forall (t3: T).((((eq T t0 t3) \to (\forall (P: Prop).P))) 
+\to ((pr3 (CHead c (Bind b) t1) t0 t3) \to (sn3 (CHead c (Bind b) t1) t3))))) 
+H5 (THead (Flat Appl) (lift (S O) O x) x0) H7) in (sn3_pr2_intro c (THead 
+(Flat Appl) x (THead (Bind b) t1 x0)) (\lambda (t3: T).(\lambda (H10: (((eq T 
+(THead (Flat Appl) x (THead (Bind b) t1 x0)) t3) \to (\forall (P: 
+Prop).P)))).(\lambda (H11: (pr2 c (THead (Flat Appl) x (THead (Bind b) t1 
+x0)) t3)).(let H12 \def (pr2_gen_appl c x (THead (Bind b) t1 x0) t3 H11) in 
+(or3_ind (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Flat 
+Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) (\lambda (_: 
+T).(\lambda (t4: T).(pr2 c (THead (Bind b) t1 x0) t4)))) (ex4_4 T T T T 
+(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T 
+(THead (Bind b) t1 x0) (THead (Bind Abst) y1 z1)))))) (\lambda (_: 
+T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind 
+Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda 
+(_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (t4: T).(\forall (b0: B).(\forall (u0: T).(pr2 (CHead c (Bind b0) 
+u0) z1 t4)))))))) (ex6_6 B T T T T T (\lambda (b0: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B 
+b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda 
+(_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) t1 x0) (THead 
+(Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind 
+b0) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda 
+(_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) 
+(\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda 
+(_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b0) y2) z1 z2)))))))) (sn3 c t3) 
+(\lambda (H13: (ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead 
+(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) 
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind b) t1 x0) 
+t4))))).(ex3_2_ind T T (\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead 
+(Flat Appl) u2 t4)))) (\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))) 
+(\lambda (_: T).(\lambda (t4: T).(pr2 c (THead (Bind b) t1 x0) t4))) (sn3 c 
+t3) (\lambda (x1: T).(\lambda (x2: T).(\lambda (H14: (eq T t3 (THead (Flat 
+Appl) x1 x2))).(\lambda (H15: (pr2 c x x1)).(\lambda (H16: (pr2 c (THead 
+(Bind b) t1 x0) x2)).(let H17 \def (eq_ind T t3 (\lambda (t0: T).((eq T 
+(THead (Flat Appl) x (THead (Bind b) t1 x0)) t0) \to (\forall (P: Prop).P))) 
+H10 (THead (Flat Appl) x1 x2) H14) in (eq_ind_r T (THead (Flat Appl) x1 x2) 
+(\lambda (t0: T).(sn3 c t0)) (let H_x \def (pr3_gen_bind b H c t1 x0 x2) in 
+(let H18 \def (H_x (pr3_pr2 c (THead (Bind b) t1 x0) x2 H16)) in (or_ind 
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead (Bind b) u2 
+t4)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: 
+T).(\lambda (t4: T).(pr3 (CHead c (Bind b) t1) x0 t4)))) (pr3 (CHead c (Bind 
+b) t1) x0 (lift (S O) O x2)) (sn3 c (THead (Flat Appl) x1 x2)) (\lambda (H19: 
+(ex3_2 T T (\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead (Bind b) u2 
+t4)))) (\lambda (u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: 
+T).(\lambda (t4: T).(pr3 (CHead c (Bind b) t1) x0 t4))))).(ex3_2_ind T T 
+(\lambda (u2: T).(\lambda (t4: T).(eq T x2 (THead (Bind b) u2 t4)))) (\lambda 
+(u2: T).(\lambda (_: T).(pr3 c t1 u2))) (\lambda (_: T).(\lambda (t4: T).(pr3 
+(CHead c (Bind b) t1) x0 t4))) (sn3 c (THead (Flat Appl) x1 x2)) (\lambda 
+(x3: T).(\lambda (x4: T).(\lambda (H20: (eq T x2 (THead (Bind b) x3 
+x4))).(\lambda (H21: (pr3 c t1 x3)).(\lambda (H22: (pr3 (CHead c (Bind b) t1) 
+x0 x4)).(let H23 \def (eq_ind T x2 (\lambda (t0: T).((eq T (THead (Flat Appl) 
+x (THead (Bind b) t1 x0)) (THead (Flat Appl) x1 t0)) \to (\forall (P: 
+Prop).P))) H17 (THead (Bind b) x3 x4) H20) in (eq_ind_r T (THead (Bind b) x3 
+x4) (\lambda (t0: T).(sn3 c (THead (Flat Appl) x1 t0))) (let H_x0 \def 
+(term_dec t1 x3) in (let H24 \def H_x0 in (or_ind (eq T t1 x3) ((eq T t1 x3) 
+\to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x1 (THead (Bind b) x3 
+x4))) (\lambda (H25: (eq T t1 x3)).(let H26 \def (eq_ind_r T x3 (\lambda (t0: 
+T).((eq T (THead (Flat Appl) x (THead (Bind b) t1 x0)) (THead (Flat Appl) x1 
+(THead (Bind b) t0 x4))) \to (\forall (P: Prop).P))) H23 t1 H25) in (let H27 
+\def (eq_ind_r T x3 (\lambda (t0: T).(pr3 c t1 t0)) H21 t1 H25) in (eq_ind T 
+t1 (\lambda (t0: T).(sn3 c (THead (Flat Appl) x1 (THead (Bind b) t0 x4)))) 
+(let H_x1 \def (term_dec x0 x4) in (let H28 \def H_x1 in (or_ind (eq T x0 x4) 
+((eq T x0 x4) \to (\forall (P: Prop).P)) (sn3 c (THead (Flat Appl) x1 (THead 
+(Bind b) t1 x4))) (\lambda (H29: (eq T x0 x4)).(let H30 \def (eq_ind_r T x4 
+(\lambda (t0: T).((eq T (THead (Flat Appl) x (THead (Bind b) t1 x0)) (THead 
+(Flat Appl) x1 (THead (Bind b) t1 t0))) \to (\forall (P: Prop).P))) H26 x0 
+H29) in (let H31 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 (CHead c (Bind b) 
+t1) x0 t0)) H22 x0 H29) in (eq_ind T x0 (\lambda (t0: T).(sn3 c (THead (Flat 
+Appl) x1 (THead (Bind b) t1 t0)))) (let H_x2 \def (term_dec x x1) in (let H32 
+\def H_x2 in (or_ind (eq T x x1) ((eq T x x1) \to (\forall (P: Prop).P)) (sn3 
+c (THead (Flat Appl) x1 (THead (Bind b) t1 x0))) (\lambda (H33: (eq T x 
+x1)).(let H34 \def (eq_ind_r T x1 (\lambda (t0: T).((eq T (THead (Flat Appl) 
+x (THead (Bind b) t1 x0)) (THead (Flat Appl) t0 (THead (Bind b) t1 x0))) \to 
+(\forall (P: Prop).P))) H30 x H33) in (let H35 \def (eq_ind_r T x1 (\lambda 
+(t0: T).(pr2 c x t0)) H15 x H33) in (eq_ind T x (\lambda (t0: T).(sn3 c 
+(THead (Flat Appl) t0 (THead (Bind b) t1 x0)))) (H34 (refl_equal T (THead 
+(Flat Appl) x (THead (Bind b) t1 x0))) (sn3 c (THead (Flat Appl) x (THead 
+(Bind b) t1 x0)))) x1 H33)))) (\lambda (H33: (((eq T x x1) \to (\forall (P: 
+Prop).P)))).(H8 (THead (Flat Appl) (lift (S O) O x1) x0) (\lambda (H34: (eq T 
+(THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) 
+x0))).(\lambda (P: Prop).(let H35 \def (f_equal T T (\lambda (e: T).(match e 
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map 
+(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) 
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with 
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) 
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in 
+lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow 
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match 
+t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef 
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | 
+(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) 
+t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) 
+(lift (S O) O x1) x0) H34) in (let H36 \def (eq_ind_r T x1 (\lambda (t0: 
+T).((eq T x t0) \to (\forall (P0: Prop).P0))) H33 x (lift_inj x x1 (S O) O 
+H35)) in (let H37 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x 
+(lift_inj x x1 (S O) O H35)) in (H36 (refl_equal T x) P)))))) (pr3_flat 
+(CHead c (Bind b) t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c 
+(Bind b) t1) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 
+(pr3_pr2 c x x1 H15)) x0 x0 (pr3_refl (CHead c (Bind b) t1) x0) Appl) x1 x0 
+(refl_equal T (THead (Flat Appl) (lift (S O) O x1) x0)))) H32))) x4 H29)))) 
+(\lambda (H29: (((eq T x0 x4) \to (\forall (P: Prop).P)))).(H8 (THead (Flat 
+Appl) (lift (S O) O x1) x4) (\lambda (H30: (eq T (THead (Flat Appl) (lift (S 
+O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) x4))).(\lambda (P: 
+Prop).(let H31 \def (f_equal T T (\lambda (e: T).(match e in T return 
+(\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map (f: ((nat 
+\to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) 
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with 
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) 
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in 
+lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow 
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match 
+t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef 
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | 
+(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) 
+t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) 
+(lift (S O) O x1) x4) H30) in ((let H32 \def (f_equal T T (\lambda (e: 
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | 
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat 
+Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) x4) H30) in 
+(\lambda (H33: (eq T (lift (S O) O x) (lift (S O) O x1))).(let H34 \def 
+(eq_ind_r T x4 (\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) 
+H29 x0 H32) in (let H35 \def (eq_ind_r T x4 (\lambda (t0: T).((eq T (THead 
+(Flat Appl) x (THead (Bind b) t1 x0)) (THead (Flat Appl) x1 (THead (Bind b) 
+t1 t0))) \to (\forall (P0: Prop).P0))) H26 x0 H32) in (let H36 \def (eq_ind_r 
+T x4 (\lambda (t0: T).(pr3 (CHead c (Bind b) t1) x0 t0)) H22 x0 H32) in (let 
+H37 \def (eq_ind_r T x1 (\lambda (t0: T).((eq T (THead (Flat Appl) x (THead 
+(Bind b) t1 x0)) (THead (Flat Appl) t0 (THead (Bind b) t1 x0))) \to (\forall 
+(P0: Prop).P0))) H35 x (lift_inj x x1 (S O) O H33)) in (let H38 \def 
+(eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x (lift_inj x x1 (S O) O 
+H33)) in (H34 (refl_equal T x0) P)))))))) H31)))) (pr3_flat (CHead c (Bind b) 
+t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c (Bind b) t1) c (S 
+O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 (pr3_pr2 c x x1 H15)) 
+x0 x4 H22 Appl) x1 x4 (refl_equal T (THead (Flat Appl) (lift (S O) O x1) 
+x4)))) H28))) x3 H25)))) (\lambda (H25: (((eq T t1 x3) \to (\forall (P: 
+Prop).P)))).(H2 x3 H25 H21 x4 x1 (sn3_cpr3_trans c t1 x3 H21 (Bind b) (THead 
+(Flat Appl) (lift (S O) O x1) x4) (let H_x1 \def (term_dec x0 x4) in (let H26 
+\def H_x1 in (or_ind (eq T x0 x4) ((eq T x0 x4) \to (\forall (P: Prop).P)) 
+(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x1) x4)) (\lambda 
+(H27: (eq T x0 x4)).(let H28 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 (CHead 
+c (Bind b) t1) x0 t0)) H22 x0 H27) in (eq_ind T x0 (\lambda (t0: T).(sn3 
+(CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x1) t0))) (let H_x2 
+\def (term_dec x x1) in (let H29 \def H_x2 in (or_ind (eq T x x1) ((eq T x 
+x1) \to (\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat Appl) 
+(lift (S O) O x1) x0)) (\lambda (H30: (eq T x x1)).(let H31 \def (eq_ind_r T 
+x1 (\lambda (t0: T).(pr2 c x t0)) H15 x H30) in (eq_ind T x (\lambda (t0: 
+T).(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O t0) x0))) 
+(sn3_sing (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x) x0) H9) 
+x1 H30))) (\lambda (H30: (((eq T x x1) \to (\forall (P: Prop).P)))).(H9 
+(THead (Flat Appl) (lift (S O) O x1) x0) (\lambda (H31: (eq T (THead (Flat 
+Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) 
+x0))).(\lambda (P: Prop).(let H32 \def (f_equal T T (\lambda (e: T).(match e 
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map 
+(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) 
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with 
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) 
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in 
+lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow 
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match 
+t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef 
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | 
+(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) 
+t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) 
+(lift (S O) O x1) x0) H31) in (let H33 \def (eq_ind_r T x1 (\lambda (t0: 
+T).((eq T x t0) \to (\forall (P0: Prop).P0))) H30 x (lift_inj x x1 (S O) O 
+H32)) in (let H34 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x 
+(lift_inj x x1 (S O) O H32)) in (H33 (refl_equal T x) P)))))) (pr3_flat 
+(CHead c (Bind b) t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c 
+(Bind b) t1) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 
+(pr3_pr2 c x x1 H15)) x0 x0 (pr3_refl (CHead c (Bind b) t1) x0) Appl))) 
+H29))) x4 H27))) (\lambda (H27: (((eq T x0 x4) \to (\forall (P: 
+Prop).P)))).(H9 (THead (Flat Appl) (lift (S O) O x1) x4) (\lambda (H28: (eq T 
+(THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) 
+x4))).(\lambda (P: Prop).(let H29 \def (f_equal T T (\lambda (e: T).(match e 
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map 
+(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) 
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with 
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) 
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in 
+lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (TLRef _) \Rightarrow 
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match 
+t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef 
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | 
+(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) 
+t4))]) in lref_map) (\lambda (x5: nat).(plus x5 (S O))) O x) | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) 
+(lift (S O) O x1) x4) H28) in ((let H30 \def (f_equal T T (\lambda (e: 
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | 
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat 
+Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) x4) H28) in 
+(\lambda (H31: (eq T (lift (S O) O x) (lift (S O) O x1))).(let H32 \def 
+(eq_ind_r T x4 (\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: Prop).P0))) 
+H27 x0 H30) in (let H33 \def (eq_ind_r T x4 (\lambda (t0: T).(pr3 (CHead c 
+(Bind b) t1) x0 t0)) H22 x0 H30) in (let H34 \def (eq_ind_r T x1 (\lambda 
+(t0: T).(pr2 c x t0)) H15 x (lift_inj x x1 (S O) O H31)) in (H32 (refl_equal 
+T x0) P)))))) H29)))) (pr3_flat (CHead c (Bind b) t1) (lift (S O) O x) (lift 
+(S O) O x1) (pr3_lift (CHead c (Bind b) t1) c (S O) O (drop_drop (Bind b) O c 
+c (drop_refl c) t1) x x1 (pr3_pr2 c x x1 H15)) x0 x4 H22 Appl))) H26)))))) 
+H24))) x2 H20))))))) H19)) (\lambda (H19: (pr3 (CHead c (Bind b) t1) x0 (lift 
+(S O) O x2))).(sn3_gen_lift (CHead c (Bind b) t1) (THead (Flat Appl) x1 x2) 
+(S O) O (eq_ind_r T (THead (Flat Appl) (lift (S O) O x1) (lift (S O) (s (Flat 
+Appl) O) x2)) (\lambda (t0: T).(sn3 (CHead c (Bind b) t1) t0)) (sn3_pr3_trans 
+(CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x1) x0) (let H_x0 \def 
+(term_dec x x1) in (let H20 \def H_x0 in (or_ind (eq T x x1) ((eq T x x1) \to 
+(\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S 
+O) O x1) x0)) (\lambda (H21: (eq T x x1)).(let H22 \def (eq_ind_r T x1 
+(\lambda (t0: T).(pr2 c x t0)) H15 x H21) in (eq_ind T x (\lambda (t0: 
+T).(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O t0) x0))) 
+(sn3_sing (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O x) x0) H9) 
+x1 H21))) (\lambda (H21: (((eq T x x1) \to (\forall (P: Prop).P)))).(H9 
+(THead (Flat Appl) (lift (S O) O x1) x0) (\lambda (H22: (eq T (THead (Flat 
+Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x1) 
+x0))).(\lambda (P: Prop).(let H23 \def (f_equal T T (\lambda (e: T).(match e 
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map 
+(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) 
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with 
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) 
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in 
+lref_map) (\lambda (x3: nat).(plus x3 (S O))) O x) | (TLRef _) \Rightarrow 
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match 
+t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef 
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | 
+(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) 
+t4))]) in lref_map) (\lambda (x3: nat).(plus x3 (S O))) O x) | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) 
+(lift (S O) O x1) x0) H22) in (let H24 \def (eq_ind_r T x1 (\lambda (t0: 
+T).((eq T x t0) \to (\forall (P0: Prop).P0))) H21 x (lift_inj x x1 (S O) O 
+H23)) in (let H25 \def (eq_ind_r T x1 (\lambda (t0: T).(pr2 c x t0)) H15 x 
+(lift_inj x x1 (S O) O H23)) in (H24 (refl_equal T x) P)))))) (pr3_flat 
+(CHead c (Bind b) t1) (lift (S O) O x) (lift (S O) O x1) (pr3_lift (CHead c 
+(Bind b) t1) c (S O) O (drop_drop (Bind b) O c c (drop_refl c) t1) x x1 
+(pr3_pr2 c x x1 H15)) x0 x0 (pr3_refl (CHead c (Bind b) t1) x0) Appl))) 
+H20))) (THead (Flat Appl) (lift (S O) O x1) (lift (S O) O x2)) (pr3_thin_dx 
+(CHead c (Bind b) t1) x0 (lift (S O) O x2) H19 (lift (S O) O x1) Appl)) (lift 
+(S O) O (THead (Flat Appl) x1 x2)) (lift_head (Flat Appl) x1 x2 (S O) O)) c 
+(drop_drop (Bind b) O c c (drop_refl c) t1))) H18))) t3 H14))))))) H13)) 
+(\lambda (H13: (ex4_4 T T T T (\lambda (y1: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (_: T).(eq T (THead (Bind b) t1 x0) (THead (Bind Abst) y1 
+z1)))))) (\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (t4: 
+T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) (\lambda (_: T).(\lambda (_: 
+T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x u2))))) (\lambda (_: T).(\lambda 
+(z1: T).(\lambda (_: T).(\lambda (t4: T).(\forall (b0: B).(\forall (u0: 
+T).(pr2 (CHead c (Bind b0) u0) z1 t4))))))))).(ex4_4_ind T T T T (\lambda 
+(y1: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind 
+b) t1 x0) (THead (Bind Abst) y1 z1)))))) (\lambda (_: T).(\lambda (_: 
+T).(\lambda (u2: T).(\lambda (t4: T).(eq T t3 (THead (Bind Abbr) u2 t4)))))) 
+(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x 
+u2))))) (\lambda (_: T).(\lambda (z1: T).(\lambda (_: T).(\lambda (t4: 
+T).(\forall (b0: B).(\forall (u0: T).(pr2 (CHead c (Bind b0) u0) z1 t4))))))) 
+(sn3 c t3) (\lambda (x1: T).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: 
+T).(\lambda (H14: (eq T (THead (Bind b) t1 x0) (THead (Bind Abst) x1 
+x2))).(\lambda (H15: (eq T t3 (THead (Bind Abbr) x3 x4))).(\lambda (_: (pr2 c 
+x x3)).(\lambda (H17: ((\forall (b0: B).(\forall (u0: T).(pr2 (CHead c (Bind 
+b0) u0) x2 x4))))).(let H18 \def (eq_ind T t3 (\lambda (t0: T).((eq T (THead 
+(Flat Appl) x (THead (Bind b) t1 x0)) t0) \to (\forall (P: Prop).P))) H10 
+(THead (Bind Abbr) x3 x4) H15) in (eq_ind_r T (THead (Bind Abbr) x3 x4) 
+(\lambda (t0: T).(sn3 c t0)) (let H19 \def (f_equal T B (\lambda (e: 
+T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | 
+(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return 
+(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow 
+b])])) (THead (Bind b) t1 x0) (THead (Bind Abst) x1 x2) H14) in ((let H20 
+\def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) 
+with [(TSort _) \Rightarrow t1 | (TLRef _) \Rightarrow t1 | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind Abst) x1 x2) H14) in 
+((let H21 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: 
+T).T) with [(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ _ 
+t0) \Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind Abst) x1 x2) H14) 
+in (\lambda (_: (eq T t1 x1)).(\lambda (H23: (eq B b Abst)).(let H24 \def 
+(eq_ind_r T x2 (\lambda (t0: T).(\forall (b0: B).(\forall (u0: T).(pr2 (CHead 
+c (Bind b0) u0) t0 x4)))) H17 x0 H21) in (let H25 \def (eq_ind B b (\lambda 
+(b0: B).((eq T (THead (Flat Appl) x (THead (Bind b0) t1 x0)) (THead (Bind 
+Abbr) x3 x4)) \to (\forall (P: Prop).P))) H18 Abst H23) in (let H26 \def 
+(eq_ind B b (\lambda (b0: B).(\forall (t4: T).((((eq T (THead (Flat Appl) 
+(lift (S O) O x) x0) t4) \to (\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind 
+b0) t1) (THead (Flat Appl) (lift (S O) O x) x0) t4) \to (sn3 (CHead c (Bind 
+b0) t1) t4))))) H9 Abst H23) in (let H27 \def (eq_ind B b (\lambda (b0: 
+B).(\forall (t4: T).((((eq T (THead (Flat Appl) (lift (S O) O x) x0) t4) \to 
+(\forall (P: Prop).P))) \to ((pr3 (CHead c (Bind b0) t1) (THead (Flat Appl) 
+(lift (S O) O x) x0) t4) \to (\forall (x5: T).(\forall (x6: T).((eq T t4 
+(THead (Flat Appl) (lift (S O) O x5) x6)) \to (sn3 c (THead (Flat Appl) x5 
+(THead (Bind b0) t1 x6)))))))))) H8 Abst H23) in (let H28 \def (eq_ind B b 
+(\lambda (b0: B).(\forall (t4: T).((((eq T t1 t4) \to (\forall (P: Prop).P))) 
+\to ((pr3 c t1 t4) \to (\forall (t0: T).(\forall (v0: T).((sn3 (CHead c (Bind 
+b0) t4) (THead (Flat Appl) (lift (S O) O v0) t0)) \to (sn3 c (THead (Flat 
+Appl) v0 (THead (Bind b0) t4 t0)))))))))) H2 Abst H23) in (let H29 \def 
+(eq_ind B b (\lambda (b0: B).(not (eq B b0 Abst))) H Abst H23) in (let H30 
+\def (match (H29 (refl_equal B Abst)) in False return (\lambda (_: 
+False).(sn3 c (THead (Bind Abbr) x3 x4))) with []) in H30)))))))))) H20)) 
+H19)) t3 H15)))))))))) H13)) (\lambda (H13: (ex6_6 B T T T T T (\lambda (b0: 
+B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(_: T).(not (eq B b0 Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda 
+(z1: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) 
+t1 x0) (THead (Bind b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T 
+t3 (THead (Bind b0) y2 (THead (Flat Appl) (lift (S O) O u2) z2))))))))) 
+(\lambda (_: B).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: 
+T).(\lambda (_: T).(pr2 c x u2))))))) (\lambda (_: B).(\lambda (y1: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 
+y2))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: 
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 (CHead c (Bind b0) y2) z1 
+z2))))))))).(ex6_6_ind B T T T T T (\lambda (b0: B).(\lambda (_: T).(\lambda 
+(_: T).(\lambda (_: T).(\lambda (_: T).(\lambda (_: T).(not (eq B b0 
+Abst)))))))) (\lambda (b0: B).(\lambda (y1: T).(\lambda (z1: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(eq T (THead (Bind b) t1 x0) (THead (Bind 
+b0) y1 z1)))))))) (\lambda (b0: B).(\lambda (_: T).(\lambda (_: T).(\lambda 
+(z2: T).(\lambda (u2: T).(\lambda (y2: T).(eq T t3 (THead (Bind b0) y2 (THead 
+(Flat Appl) (lift (S O) O u2) z2))))))))) (\lambda (_: B).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (_: T).(\lambda (u2: T).(\lambda (_: T).(pr2 c x 
+u2))))))) (\lambda (_: B).(\lambda (y1: T).(\lambda (_: T).(\lambda (_: 
+T).(\lambda (_: T).(\lambda (y2: T).(pr2 c y1 y2))))))) (\lambda (b0: 
+B).(\lambda (_: T).(\lambda (z1: T).(\lambda (z2: T).(\lambda (_: T).(\lambda 
+(y2: T).(pr2 (CHead c (Bind b0) y2) z1 z2))))))) (sn3 c t3) (\lambda (x1: 
+B).(\lambda (x2: T).(\lambda (x3: T).(\lambda (x4: T).(\lambda (x5: 
+T).(\lambda (x6: T).(\lambda (_: (not (eq B x1 Abst))).(\lambda (H15: (eq T 
+(THead (Bind b) t1 x0) (THead (Bind x1) x2 x3))).(\lambda (H16: (eq T t3 
+(THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)))).(\lambda 
+(H17: (pr2 c x x5)).(\lambda (H18: (pr2 c x2 x6)).(\lambda (H19: (pr2 (CHead 
+c (Bind x1) x6) x3 x4)).(let H20 \def (eq_ind T t3 (\lambda (t0: T).((eq T 
+(THead (Flat Appl) x (THead (Bind b) t1 x0)) t0) \to (\forall (P: Prop).P))) 
+H10 (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)) H16) in 
+(eq_ind_r T (THead (Bind x1) x6 (THead (Flat Appl) (lift (S O) O x5) x4)) 
+(\lambda (t0: T).(sn3 c t0)) (let H21 \def (f_equal T B (\lambda (e: 
+T).(match e in T return (\lambda (_: T).B) with [(TSort _) \Rightarrow b | 
+(TLRef _) \Rightarrow b | (THead k _ _) \Rightarrow (match k in K return 
+(\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _) \Rightarrow 
+b])])) (THead (Bind b) t1 x0) (THead (Bind x1) x2 x3) H15) in ((let H22 \def 
+(f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: T).T) with 
+[(TSort _) \Rightarrow t1 | (TLRef _) \Rightarrow t1 | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind x1) x2 x3) H15) in 
+((let H23 \def (f_equal T T (\lambda (e: T).(match e in T return (\lambda (_: 
+T).T) with [(TSort _) \Rightarrow x0 | (TLRef _) \Rightarrow x0 | (THead _ _ 
+t0) \Rightarrow t0])) (THead (Bind b) t1 x0) (THead (Bind x1) x2 x3) H15) in 
+(\lambda (H24: (eq T t1 x2)).(\lambda (H25: (eq B b x1)).(let H26 \def 
+(eq_ind_r T x3 (\lambda (t0: T).(pr2 (CHead c (Bind x1) x6) t0 x4)) H19 x0 
+H23) in (let H27 \def (eq_ind_r T x2 (\lambda (t0: T).(pr2 c t0 x6)) H18 t1 
+H24) in (let H28 \def (eq_ind_r B x1 (\lambda (b0: B).(pr2 (CHead c (Bind b0) 
+x6) x0 x4)) H26 b H25) in (eq_ind B b (\lambda (b0: B).(sn3 c (THead (Bind 
+b0) x6 (THead (Flat Appl) (lift (S O) O x5) x4)))) (sn3_pr3_trans c (THead 
+(Bind b) t1 (THead (Flat Appl) (lift (S O) O x5) x4)) (sn3_bind b H c t1 
+(sn3_sing c t1 H1) (THead (Flat Appl) (lift (S O) O x5) x4) (let H_x \def 
+(term_dec x x5) in (let H29 \def H_x in (or_ind (eq T x x5) ((eq T x x5) \to 
+(\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S 
+O) O x5) x4)) (\lambda (H30: (eq T x x5)).(let H31 \def (eq_ind_r T x5 
+(\lambda (t0: T).(pr2 c x t0)) H17 x H30) in (eq_ind T x (\lambda (t0: 
+T).(sn3 (CHead c (Bind b) t1) (THead (Flat Appl) (lift (S O) O t0) x4))) (let 
+H_x0 \def (term_dec x0 x4) in (let H32 \def H_x0 in (or_ind (eq T x0 x4) ((eq 
+T x0 x4) \to (\forall (P: Prop).P)) (sn3 (CHead c (Bind b) t1) (THead (Flat 
+Appl) (lift (S O) O x) x4)) (\lambda (H33: (eq T x0 x4)).(let H34 \def 
+(eq_ind_r T x4 (\lambda (t0: T).(pr2 (CHead c (Bind b) x6) x0 t0)) H28 x0 
+H33) in (eq_ind T x0 (\lambda (t0: T).(sn3 (CHead c (Bind b) t1) (THead (Flat 
+Appl) (lift (S O) O x) t0))) (sn3_sing (CHead c (Bind b) t1) (THead (Flat 
+Appl) (lift (S O) O x) x0) H9) x4 H33))) (\lambda (H33: (((eq T x0 x4) \to 
+(\forall (P: Prop).P)))).(H9 (THead (Flat Appl) (lift (S O) O x) x4) (\lambda 
+(H34: (eq T (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift 
+(S O) O x) x4))).(\lambda (P: Prop).(let H35 \def (f_equal T T (\lambda (e: 
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | 
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat 
+Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x) x4) H34) in 
+(let H36 \def (eq_ind_r T x4 (\lambda (t0: T).((eq T x0 t0) \to (\forall (P0: 
+Prop).P0))) H33 x0 H35) in (let H37 \def (eq_ind_r T x4 (\lambda (t0: T).(pr2 
+(CHead c (Bind b) x6) x0 t0)) H28 x0 H35) in (H36 (refl_equal T x0) P)))))) 
+(pr3_pr3_pr3_t c t1 x6 (pr3_pr2 c t1 x6 H27) (THead (Flat Appl) (lift (S O) O 
+x) x0) (THead (Flat Appl) (lift (S O) O x) x4) (Bind b) (pr3_pr2 (CHead c 
+(Bind b) x6) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift 
+(S O) O x) x4) (pr2_thin_dx (CHead c (Bind b) x6) x0 x4 H28 (lift (S O) O x) 
+Appl))))) H32))) x5 H30))) (\lambda (H30: (((eq T x x5) \to (\forall (P: 
+Prop).P)))).(H9 (THead (Flat Appl) (lift (S O) O x5) x4) (\lambda (H31: (eq T 
+(THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x5) 
+x4))).(\lambda (P: Prop).(let H32 \def (f_equal T T (\lambda (e: T).(match e 
+in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow ((let rec lref_map 
+(f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match t0 with [(TSort n) 
+\Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef (match (blt i d) with 
+[true \Rightarrow i | false \Rightarrow (f i)])) | (THead k u0 t4) 
+\Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) t4))]) in 
+lref_map) (\lambda (x7: nat).(plus x7 (S O))) O x) | (TLRef _) \Rightarrow 
+((let rec lref_map (f: ((nat \to nat))) (d: nat) (t0: T) on t0: T \def (match 
+t0 with [(TSort n) \Rightarrow (TSort n) | (TLRef i) \Rightarrow (TLRef 
+(match (blt i d) with [true \Rightarrow i | false \Rightarrow (f i)])) | 
+(THead k u0 t4) \Rightarrow (THead k (lref_map f d u0) (lref_map f (s k d) 
+t4))]) in lref_map) (\lambda (x7: nat).(plus x7 (S O))) O x) | (THead _ t0 _) 
+\Rightarrow t0])) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) 
+(lift (S O) O x5) x4) H31) in ((let H33 \def (f_equal T T (\lambda (e: 
+T).(match e in T return (\lambda (_: T).T) with [(TSort _) \Rightarrow x0 | 
+(TLRef _) \Rightarrow x0 | (THead _ _ t0) \Rightarrow t0])) (THead (Flat 
+Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift (S O) O x5) x4) H31) in 
+(\lambda (H34: (eq T (lift (S O) O x) (lift (S O) O x5))).(let H35 \def 
+(eq_ind_r T x5 (\lambda (t0: T).((eq T x t0) \to (\forall (P0: Prop).P0))) 
+H30 x (lift_inj x x5 (S O) O H34)) in (let H36 \def (eq_ind_r T x5 (\lambda 
+(t0: T).(pr2 c x t0)) H17 x (lift_inj x x5 (S O) O H34)) in (let H37 \def 
+(eq_ind_r T x4 (\lambda (t0: T).(pr2 (CHead c (Bind b) x6) x0 t0)) H28 x0 
+H33) in (H35 (refl_equal T x) P)))))) H32)))) (pr3_pr3_pr3_t c t1 x6 (pr3_pr2 
+c t1 x6 H27) (THead (Flat Appl) (lift (S O) O x) x0) (THead (Flat Appl) (lift 
+(S O) O x5) x4) (Bind b) (pr3_flat (CHead c (Bind b) x6) (lift (S O) O x) 
+(lift (S O) O x5) (pr3_lift (CHead c (Bind b) x6) c (S O) O (drop_drop (Bind 
+b) O c c (drop_refl c) x6) x x5 (pr3_pr2 c x x5 H17)) x0 x4 (pr3_pr2 (CHead c 
+(Bind b) x6) x0 x4 H28) Appl)))) H29)))) (THead (Bind b) x6 (THead (Flat 
+Appl) (lift (S O) O x5) x4)) (pr3_pr2 c (THead (Bind b) t1 (THead (Flat Appl) 
+(lift (S O) O x5) x4)) (THead (Bind b) x6 (THead (Flat Appl) (lift (S O) O 
+x5) x4)) (pr2_head_1 c t1 x6 H27 (Bind b) (THead (Flat Appl) (lift (S O) O 
+x5) x4)))) x1 H25))))))) H22)) H21)) t3 H16)))))))))))))) H13)) 
+H12)))))))))))))) y H4))))) H3))))))) u H0))))).
+
+theorem sn3_appls_bind:
+ \forall (b: B).((not (eq B b Abst)) \to (\forall (c: C).(\forall (u: 
+T).((sn3 c u) \to (\forall (vs: TList).(\forall (t: T).((sn3 (CHead c (Bind 
+b) u) (THeads (Flat Appl) (lifts (S O) O vs) t)) \to (sn3 c (THeads (Flat 
+Appl) vs (THead (Bind b) u t))))))))))
+\def
+ \lambda (b: B).(\lambda (H: (not (eq B b Abst))).(\lambda (c: C).(\lambda 
+(u: T).(\lambda (H0: (sn3 c u)).(\lambda (vs: TList).(TList_ind (\lambda (t: 
+TList).(\forall (t0: T).((sn3 (CHead c (Bind b) u) (THeads (Flat Appl) (lifts 
+(S O) O t) t0)) \to (sn3 c (THeads (Flat Appl) t (THead (Bind b) u t0)))))) 
+(\lambda (t: T).(\lambda (H1: (sn3 (CHead c (Bind b) u) t)).(sn3_bind b H c u 
+H0 t H1))) (\lambda (v: T).(\lambda (vs0: TList).(TList_ind (\lambda (t: 
+TList).(((\forall (t0: T).((sn3 (CHead c (Bind b) u) (THeads (Flat Appl) 
+(lifts (S O) O t) t0)) \to (sn3 c (THeads (Flat Appl) t (THead (Bind b) u 
+t0)))))) \to (\forall (t0: T).((sn3 (CHead c (Bind b) u) (THead (Flat Appl) 
+(lift (S O) O v) (THeads (Flat Appl) (lifts (S O) O t) t0))) \to (sn3 c 
+(THead (Flat Appl) v (THeads (Flat Appl) t (THead (Bind b) u t0)))))))) 
+(\lambda (_: ((\forall (t: T).((sn3 (CHead c (Bind b) u) (THeads (Flat Appl) 
+(lifts (S O) O TNil) t)) \to (sn3 c (THeads (Flat Appl) TNil (THead (Bind b) 
+u t))))))).(\lambda (t: T).(\lambda (H2: (sn3 (CHead c (Bind b) u) (THead 
+(Flat Appl) (lift (S O) O v) (THeads (Flat Appl) (lifts (S O) O TNil) 
+t)))).(sn3_appl_bind b H c u H0 t v H2)))) (\lambda (t: T).(\lambda (t0: 
+TList).(\lambda (_: ((((\forall (t1: T).((sn3 (CHead c (Bind b) u) (THeads 
+(Flat Appl) (lifts (S O) O t0) t1)) \to (sn3 c (THeads (Flat Appl) t0 (THead 
+(Bind b) u t1)))))) \to (\forall (t1: T).((sn3 (CHead c (Bind b) u) (THead 
+(Flat Appl) (lift (S O) O v) (THeads (Flat Appl) (lifts (S O) O t0) t1))) \to 
+(sn3 c (THead (Flat Appl) v (THeads (Flat Appl) t0 (THead (Bind b) u 
+t1))))))))).(\lambda (H2: ((\forall (t1: T).((sn3 (CHead c (Bind b) u) 
+(THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1)) \to (sn3 c (THeads 
+(Flat Appl) (TCons t t0) (THead (Bind b) u t1))))))).(\lambda (t1: 
+T).(\lambda (H3: (sn3 (CHead c (Bind b) u) (THead (Flat Appl) (lift (S O) O 
+v) (THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1)))).(let H4 \def 
+(sn3_gen_flat Appl (CHead c (Bind b) u) (lift (S O) O v) (THeads (Flat Appl) 
+(lifts (S O) O (TCons t t0)) t1) H3) in (and_ind (sn3 (CHead c (Bind b) u) 
+(lift (S O) O v)) (sn3 (CHead c (Bind b) u) (THead (Flat Appl) (lift (S O) O 
+t) (THeads (Flat Appl) (lifts (S O) O t0) t1))) (sn3 c (THead (Flat Appl) v 
+(THeads (Flat Appl) (TCons t t0) (THead (Bind b) u t1)))) (\lambda (H5: (sn3 
+(CHead c (Bind b) u) (lift (S O) O v))).(\lambda (H6: (sn3 (CHead c (Bind b) 
+u) (THead (Flat Appl) (lift (S O) O t) (THeads (Flat Appl) (lifts (S O) O t0) 
+t1)))).(let H_y \def (sn3_gen_lift (CHead c (Bind b) u) v (S O) O H5 c) in 
+(sn3_appl_appls t (THead (Bind b) u t1) t0 c (H2 t1 H6) v (H_y (drop_drop 
+(Bind b) O c c (drop_refl c) u)) (\lambda (u2: T).(\lambda (H7: (pr3 c 
+(THeads (Flat Appl) (TCons t t0) (THead (Bind b) u t1)) u2)).(\lambda (H8: 
+(((iso (THeads (Flat Appl) (TCons t t0) (THead (Bind b) u t1)) u2) \to 
+(\forall (P: Prop).P)))).(let H9 \def (pr3_iso_appls_bind b H (TCons t t0) u 
+t1 c u2 H7 H8) in (sn3_pr3_trans c (THead (Flat Appl) v (THead (Bind b) u 
+(THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1))) (sn3_appl_bind b H c u 
+H0 (THeads (Flat Appl) (lifts (S O) O (TCons t t0)) t1) v H3) (THead (Flat 
+Appl) v u2) (pr3_flat c v v (pr3_refl c v) (THead (Bind b) u (THeads (Flat 
+Appl) (lifts (S O) O (TCons t t0)) t1)) u2 H9 Appl)))))))))) H4)))))))) 
+vs0))) vs)))))).
+
+theorem sn3_appls_abbr:
+ \forall (c: C).(\forall (d: C).(\forall (w: T).(\forall (i: nat).((getl i c 
+(CHead d (Bind Abbr) w)) \to (\forall (vs: TList).((sn3 c (THeads (Flat Appl) 
+vs (lift (S i) O w))) \to (sn3 c (THeads (Flat Appl) vs (TLRef i)))))))))
+\def
+ \lambda (c: C).(\lambda (d: C).(\lambda (w: T).(\lambda (i: nat).(\lambda 
+(H: (getl i c (CHead d (Bind Abbr) w))).(\lambda (vs: TList).(TList_ind 
+(\lambda (t: TList).((sn3 c (THeads (Flat Appl) t (lift (S i) O w))) \to (sn3 
+c (THeads (Flat Appl) t (TLRef i))))) (\lambda (H0: (sn3 c (lift (S i) O 
+w))).(let H_y \def (sn3_gen_lift c w (S i) O H0 d (getl_drop Abbr c d w i H)) 
+in (sn3_abbr c d w i H H_y))) (\lambda (v: T).(\lambda (vs0: 
+TList).(TList_ind (\lambda (t: TList).((((sn3 c (THeads (Flat Appl) t (lift 
+(S i) O w))) \to (sn3 c (THeads (Flat Appl) t (TLRef i))))) \to ((sn3 c 
+(THead (Flat Appl) v (THeads (Flat Appl) t (lift (S i) O w)))) \to (sn3 c 
+(THead (Flat Appl) v (THeads (Flat Appl) t (TLRef i))))))) (\lambda (_: 
+(((sn3 c (THeads (Flat Appl) TNil (lift (S i) O w))) \to (sn3 c (THeads (Flat 
+Appl) TNil (TLRef i)))))).(\lambda (H1: (sn3 c (THead (Flat Appl) v (THeads 
+(Flat Appl) TNil (lift (S i) O w))))).(nf3_appl_abbr c d w i H v H1))) 
+(\lambda (t: T).(\lambda (t0: TList).(\lambda (_: (((((sn3 c (THeads (Flat 
+Appl) t0 (lift (S i) O w))) \to (sn3 c (THeads (Flat Appl) t0 (TLRef i))))) 
+\to ((sn3 c (THead (Flat Appl) v (THeads (Flat Appl) t0 (lift (S i) O w)))) 
+\to (sn3 c (THead (Flat Appl) v (THeads (Flat Appl) t0 (TLRef 
+i)))))))).(\lambda (H1: (((sn3 c (THeads (Flat Appl) (TCons t t0) (lift (S i) 
+O w))) \to (sn3 c (THeads (Flat Appl) (TCons t t0) (TLRef i)))))).(\lambda 
+(H2: (sn3 c (THead (Flat Appl) v (THeads (Flat Appl) (TCons t t0) (lift (S i) 
+O w))))).(let H3 \def (sn3_gen_flat Appl c v (THeads (Flat Appl) (TCons t t0) 
+(lift (S i) O w)) H2) in (and_ind (sn3 c v) (sn3 c (THead (Flat Appl) t 
+(THeads (Flat Appl) t0 (lift (S i) O w)))) (sn3 c (THead (Flat Appl) v 
+(THeads (Flat Appl) (TCons t t0) (TLRef i)))) (\lambda (H4: (sn3 c 
+v)).(\lambda (H5: (sn3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S 
+i) O w))))).(sn3_appl_appls t (TLRef i) t0 c (H1 H5) v H4 (\lambda (u2: 
+T).(\lambda (H6: (pr3 c (THeads (Flat Appl) (TCons t t0) (TLRef i)) 
+u2)).(\lambda (H7: (((iso (THeads (Flat Appl) (TCons t t0) (TLRef i)) u2) \to 
+(\forall (P: Prop).P)))).(sn3_pr3_trans c (THead (Flat Appl) v (THeads (Flat 
+Appl) (TCons t t0) (lift (S i) O w))) H2 (THead (Flat Appl) v u2) 
+(pr3_thin_dx c (THeads (Flat Appl) (TCons t t0) (lift (S i) O w)) u2 
+(pr3_iso_appls_abbr c d w i H (TCons t t0) u2 H6 H7) v Appl)))))))) H3))))))) 
+vs0))) vs)))))).
+