assumption]
qed.
*)
-(* senza questo exT "fresco", universe inconsistency *)
-inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝
- ex_introT: ∀w:A. P w → exT A P.
lemma hint: ∀U. carr U → Type_OF_setoid1 ?(*(setoid1_of_SET U)*).
[ apply setoid1_of_SET; apply U
(* the same as ⋄ for a basic pair *)
definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \sup V).
intros; constructor 1;
- [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | (*∃x:U. x ♮r y ∧ x ∈ S*)
- exT ? (λx:carr U.x ♮r y ∧ x ∈ S) });
+ [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:carr U. x ♮r y ∧ x ∈ S });
intros; simplify; split; intro; cases e1; exists [1,3: apply w]
[ apply (. (#‡e)‡#); assumption
| apply (. (#‡e ^ -1)‡#); assumption]
*)
include "o-algebra.ma".
-axiom daemon: False.
+
definition orelation_of_relation: ∀o1,o2:REL. arrows1 ? o1 o2 → ORelation (SUBSETS o1) (SUBSETS o2).
intros;
constructor 1;
| cases x1; cases x2; clear x1 x2; exists; [apply w1]
[ exists; [apply w] split; assumption;
| assumption; ]]]
-qed. sistemare anche l'hint da un'altra parte e capire l'exT (doppio!)
\ No newline at end of file
+qed. (*sistemare anche l'hint da un'altra parte *)
| apply (. (#‡(e i)\sup -1)); apply f]]
qed.
-(* senza questo exT "fresco", universe inconsistency *)
-inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝
- ex_introT: ∀w:A. P w → exT A P.
-
definition big_union:
∀A:SET.∀I:SET.unary_morphism2 (setoid1_of_setoid I ⇒ Ω \sup A) (setoid2_of_setoid1 (Ω \sup A)).
intros; constructor 1;
[ intro; whd; whd in A; whd in I;
- apply ({x | (*∃i:carr I. x ∈ t i*) exT (carr I) (λi. x ∈ t i)});
+ apply ({x | ∃i:carr I. x ∈ t i });
simplify; intros; split; intros; cases e1; clear e1; exists; [1,3:apply w]
[ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ]
apply x;