#A #n * #l cases l [normalize in ⊢ (%→?); #H destruct |//]
qed.
+lemma vector_nil: ∀A.∀v:Vector A 0.
+ v = mk_Vector A 0 (nil A) (refl ??).
+#A * * // #a #tl normalize #H destruct
+qed.
+
definition vec_append ≝ λA.λn1,n2.λv1:Vector A n1.λv2: Vector A n2.
mk_Vector A (n1+n2) (v1@v2).
definition vec_map ≝ λA,B.λf:A→B.λn.λv:Vector A n.
mk_Vector B n (map ?? f v)
(trans_eq … (length_map …) (len A n v)).
+
+lemma nth_default : ∀A,i,n.∀v:Vector A n.∀d1,d2. i < n →
+ nth i ? v d1 = nth i ? v d2.
+#A #i elim i -i
+ [#n #v #d1 #d2 #ltOn lapply v @(lt_O_n_elim … ltOn)
+ -v #m #v >(vec_expand … v) //
+ |#i #Hind #n #v #d1 #d2 #ltn lapply ltn lapply v @(lt_O_n_elim … (ltn_to_ltO … ltn))
+ -v -ltn #m #v #ltim >(vec_expand … v) @(Hind m (vec_tail A (S m) v) d1 d2 ?)
+ @le_S_S_to_le //
+ ]
+qed.
+
+lemma eq_vec: ∀A,n.∀v1,v2:Vector A n.∀d.
+ (∀i. i < n → nth i A v1 d = nth i A v2 d) → v1 = v2.
+#A #n elim n -n
+ [#v1 #v2 #H >(vector_nil A v1) >(vector_nil A v2) //
+ |#n #Hind #v1 #v2 #d #H >(vec_expand … v1) >(vec_expand … v2)
+ >(Hind (vec_tail … v1) (vec_tail … v2) d)
+ [cut (vec_hd A n v1 = vec_hd A n v2) //
+ cut (∀i,d1,d2. i < S n → nth i A v1 d1 = nth i A v2 d2)
+ [#i #d1 #d2 #Hi >(nth_default ????? d) // >(nth_default ???? d2 d) // @H //]
+ -H #H @(H 0) //
+ |#i #ltin @(H (S i)) @le_S_S //
+ ]
+ ]
+qed.
(* mapi: map with index to move in list.ma *)
let rec change_vec (A:Type[0]) (n:nat) on n ≝
]
qed.
+lemma change_vec_same : ∀sig,n,v,i,d.
+ change_vec sig n v (nth i ? v d) i = v.
+#sig #n #v #i #d @(eq_vec … d)
+#i0 #Hi0 cases (decidable_eq_nat i i0) #Hi0
+[ >Hi0 >nth_change_vec //
+| >nth_change_vec_neq //
+]
+qed.
+
lemma change_vec_cons_tail :∀A,n,vA,a,b,i.
change_vec A (S n) (vec_cons ? a n vA) b (S i) =
vec_cons ? a n (change_vec A n vA b i).
#A #n #vA cases vA //
qed.
-lemma vector_nil: ∀A.∀v:Vector A 0.
- v = mk_Vector A 0 (nil A) (refl ??).
-#A * * // #a #tl normalize #H destruct
-qed.
-
-lemma nth_default : ∀A,i,n.∀v:Vector A n.∀d1,d2. i < n →
- nth i ? v d1 = nth i ? v d2.
-#A #i elim i -i
- [#n #v #d1 #d2 #ltOn lapply v @(lt_O_n_elim … ltOn)
- -v #m #v >(vec_expand … v) //
- |#i #Hind #n #v #d1 #d2 #ltn lapply ltn lapply v @(lt_O_n_elim … (ltn_to_ltO … ltn))
- -v -ltn #m #v #ltim >(vec_expand … v) @(Hind m (vec_tail A (S m) v) d1 d2 ?)
- @le_S_S_to_le //
- ]
-qed.
-
-lemma eq_vec: ∀A,n.∀v1,v2:Vector A n.∀d.
- (∀i. i < n → nth i A v1 d = nth i A v2 d) → v1 = v2.
-#A #n elim n -n
- [#v1 #v2 #H >(vector_nil A v1) >(vector_nil A v2) //
- |#n #Hind #v1 #v2 #d #H >(vec_expand … v1) >(vec_expand … v2)
- >(Hind (vec_tail … v1) (vec_tail … v2) d)
- [cut (vec_hd A n v1 = vec_hd A n v2) //
- cut (∀i,d1,d2. i < S n → nth i A v1 d1 = nth i A v2 d2)
- [#i #d1 #d2 #Hi >(nth_default ????? d) // >(nth_default ???? d2 d) // @H //]
- -H #H @(H 0) //
- |#i #ltin @(H (S i)) @le_S_S //
- ]
- ]
-qed.
-
(*
lemma length_make_listi: ∀A,a,n,i.
|make_listi A a n i| = n.
#A #B #C #f #n elim n //
#m #Hind #vA #vB #a #b >(vec_expand … vA) >(vec_expand … vB) * //
#i >pmap_vec_cons >pmap_vec_cons >change_vec_cons_tail @eq_f @Hind
-qed.
+qed.
\ No newline at end of file
i≤n → M ⊨ R → inject_TM sig M n i ⊨ inject_R sig R n i.
#sig #M #R #n #i #lein #HR #vt cases (HR (nth i ? vt (niltape ?)))
#k * * #outs #outt * #Hloop #HRout @(ex_intro ?? k)
-@(ex_intro ?? (mk_mconfig ?? n outs (change_vec ? (S n) vt outt i))) %
- [elim k in Hloop;
- [normalize in ⊢ (%\to ?); #H destruct
- |#k0 #Hind whd in ⊢ (??%?→??%?);
- >halt_inject whd in match (cstate ????);
- whd in match (cstate sig (states sig M)
- (initc sig M (nth i (tape sig) vt (niltape sig))));
- cases (true_or_false (halt sig M (start sig M))) #Hhalt >Hhalt
- whd in ⊢ (??%?→??%?);
- [#H @eq_f whd in ⊢ (??%?); lapply (de_option ??? H) -H
- whd in ⊢ (??%?→?); #H @eq_f2
- [whd in ⊢ (??%?); destruct (H) //
- |@(eq_vec … (niltape ?)) #j #lejn
- cases (true_or_false (eqb i j)) #eqij
- [>(eqb_true_to_eq … eqij) >nth_change_vec //
- <(eqb_true_to_eq … eqij) destruct (H) //
- |>nth_change_vec_neq // @(eqb_false_to_not_eq … eqij)
- ]
- ]
- |#H <Hind STOP
- [(* whd in ⊢ (???(?????%)); >loop_inject // *)
- | <H whd in ⊢ (??%?);
+@(ex_intro ?? (mk_mconfig ?? n outs (change_vec ? (S n) vt outt i))) %
+ [whd in ⊢ (??(?????%)?); <(change_vec_same ?? vt i (niltape ?)) in ⊢ (??%?);
+ @loop_inject /2 by refl, trans_eq, le_S_S/
|%[>nth_change_vec // @le_S_S //
|#j #i >nth_change_vec_neq //
]
]
-
-
-
-
-
-
-
+qed.
\ No newline at end of file