notation "hvbox(U break ↓ V)" non associative with precedence 55 for @{ 'fintersects $U $V }.
+notation "↑a" with precedence 55 for @{ 'uparrow $a }.
+
+notation "hvbox(a break ↑ b)" with precedence 55 for @{ 'funion $a $b }.
+
notation "(a \sup b)" left associative with precedence 60 for @{ 'exp $a $b}.
notation "s \sup (-1)" with precedence 60 for @{ 'invert $s }.
notation < "s \sup (-1) x" with precedence 60 for @{ 'invert_appl $s $x}.
definition uparrow ≝ λA:axiom_set.λa:A.mk_powerset ? (λb:A. a ≤ b).
-notation "↑a" with precedence 80 for @{ 'uparrow $a }.
-
interpretation "uparrow" 'uparrow a = (uparrow _ a).
-definition downarrow ≝ λA:axiom_set.λU:Ω \sup A.mk_powerset ? (λa:A. ↑a ≬ U).
-
-notation "↓a" with precedence 80 for @{ 'downarrow $a }.
+definition downarrow ≝ λA:axiom_set.λU:Ω \sup A.mk_powerset ? (λa:A. (↑a) ≬ U).
interpretation "downarrow" 'downarrow a = (downarrow _ a).
interpretation "fintersects" 'fintersects U V = (fintersects _ U V).
-(*
record convergent_generated_topology : Type ≝
{ AA:> axiom_set;
convergence: ∀a:AA.∀U,V:Ω \sup AA. a ◃ U → a ◃ V → a ◃ (U ↓ V)
}.
-*)
interpretation "Rplus" 'plus x y =
(cic:/matita/demo/power_derivative/Rplus.con x y).
-notation "hvbox(a break \middot b)"
- left associative with precedence 55
-for @{ 'times $a $b }.
-
-interpretation "Rmult" 'times x y =
+interpretation "Rmult" 'middot x y =
(cic:/matita/demo/power_derivative/Rmult.con x y).
definition Fplus ≝
interpretation "Fplus" 'plus x y =
(cic:/matita/demo/power_derivative/Fplus.con x y).
-interpretation "Fmult" 'times x y =
+interpretation "Fmult" 'middot x y =
(cic:/matita/demo/power_derivative/Fmult.con x y).
notation "2" with precedence 89
axiom Rplus_Rzero_x: ∀x:R.0+x=x.
axiom Rplus_comm: symmetric ? Rplus.
axiom Rplus_assoc: associative ? Rplus.
-axiom Rmult_Rone_x: ∀x:R.1*x=x.
-axiom Rmult_Rzero_x: ∀x:R.0*x=0.
+axiom Rmult_Rone_x: ∀x:R.1 · x=x.
+axiom Rmult_Rzero_x: ∀x:R.0 · x=0.
axiom Rmult_assoc: associative ? Rmult.
axiom Rmult_comm: symmetric ? Rmult.
axiom Rmult_Rplus_distr: distributive ? Rmult Rplus.
-alias symbol "times" = "Rmult".
+alias symbol "middot" = "Rmult".
alias symbol "plus" = "natural plus".
definition monomio ≝
axiom derivative_x1: D[x] = 1.
axiom derivative_mult: ∀f,g:R→R. D[f·g] = D[f]·g + f·D[g].
-alias symbol "times" = "Fmult".
+alias symbol "middot" = "Fmult".
theorem derivative_power: ∀n:nat. D[x \sup n] = n·x \sup (pred n).
assume n:nat.