nrecord magma_type : Type[1] ≝
{ mtcarr:> setoid;
- op: binary_morphism mtcarr mtcarr mtcarr
+ op: unary_morphism mtcarr (unary_morph_setoid mtcarr mtcarr)
}.
nrecord magma (A: magma_type) : Type[1] ≝
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
include "sets/sets.ma".
{ objs:> Type[1];
arrows: objs → objs → setoid;
id: ∀o:objs. arrows o o;
- comp: ∀o1,o2,o3. binary_morphism (arrows o2 o3) (arrows o1 o2) (arrows o1 o3);
+ comp: ∀o1,o2,o3. unary_morphism (arrows o2 o3) (unary_morph_setoid (arrows o1 o2) (arrows o1 o3));
comp_assoc: ∀o1,o2,o3,o4. ∀a34,a23,a12.
comp o1 o3 o4 a34 (comp o1 o2 o3 a23 a12) = comp o1 o2 o4 (comp o2 o3 o4 a34 a23) a12;
id_neutral_left: ∀o1,o2. ∀a: arrows o1 o2. comp ??? (id o2) a = a;
##| napply unary_morph_setoid;
##| #o; @ (λx.x); #a; #b; #H; napply H;
##| napply comp_binary_morphisms; (*CSC: why not ∘?*)
-##| #o1; #o2; #o3; #o4; #f; #g; #h; nwhd; #x; napply #;
-##|##6,7: #o1; #o2; #f; nwhd; #x; napply #; ##]
+##| #o1; #o2; #o3; #o4; #f; #g; #h; #x; #x'; #Hx; nnormalize; napply (†(†(†Hx)))
+##|##6,7: #o1; #o2; #f; #x; #x'; #Hx; nnormalize; napply (†Hx) ]
nqed.
unification hint 0 ≔ ;
nlapply (Hc y I); *; #index; *; #Hi1; #Hi2;
nlapply (f_sur ???? f ? Hi1); *; #nindex; *; #Hni1; #Hni2;
nlapply (f_sur ???? (fi nindex) y ?)
- [ alias symbol "refl" = "refl".
-alias symbol "prop1" = "prop11".
-alias symbol "prop2" = "prop21 mem".
+ [ alias symbol "refl" (instance 3) = "refl".
+alias symbol "prop2" (instance 2) = "prop21".
+alias symbol "prop1" (instance 4) = "prop11".
napply (. #‡(†?));##[##2: napply Hni2 |##1: ##skip | nassumption]##]
*; #nindex2; *; #Hni21; #Hni22;
nletin xxx ≝ (plus (big_plus (minus n nindex) (λi.λ_.s (S (plus i nindex)))) nindex2);
(* -------------------------------------------------------------------- *) ⊢
fun1 ?? R ≡ (composition … f g).
-(*
ndefinition comp_binary_morphisms:
∀o1,o2,o3.
- binary_morphism (unary_morph_setoid o2 o3) (unary_morph_setoid o1 o2)
- (unary_morph_setoid o1 o3).
-#o1; #o2; #o3; @
+ unary_morphism (unary_morph_setoid o2 o3)
+ (unary_morph_setoid (unary_morph_setoid o1 o2) (unary_morph_setoid o1 o3)).
+#o1; #o2; #o3; napply mk_binary_morphism
[ #f; #g; napply (comp_unary_morphisms … f g) (*CSC: why not ∘?*)
- | #a; #a'; #b; #b'; #ea; #eb; #x; nnormalize;
- napply (.= †(eb x)); napply ea.
-nqed.
-*)
+ | #a; #a'; #b; #b'; #ea; #eb; #x; #x'; #Hx; nnormalize; /3/ ]
+nqed.
\ No newline at end of file
(* -------------------------------------------------------------------- *) ⊢
fun11 ?? R ≡ (composition1 … f g).
-(*
-ndefinition comp_binary_morphisms:
+ndefinition comp1_binary_morphisms:
∀o1,o2,o3.
- binary_morphism1 (unary_morphism1_setoid1 o2 o3) (unary_morphism1_setoid1 o1 o2)
- (unary_morphism1_setoid1 o1 o3).
-#o1; #o2; #o3; @
+ unary_morphism1 (unary_morphism1_setoid1 o2 o3)
+ (unary_morphism1_setoid1 (unary_morphism1_setoid1 o1 o2) (unary_morphism1_setoid1 o1 o3)).
+#o1; #o2; #o3; napply mk_binary_morphism1
[ #f; #g; napply (comp1_unary_morphisms … f g) (*CSC: why not ∘?*)
- | #a; #a'; #b; #b'; #ea; #eb; #x; nnormalize;
- napply (.= †(eb x)); napply ea.
-nqed.
-*)
+ | #a; #a'; #b; #b'; #ea; #eb; #x; #x'; #Hx; nnormalize; /3/ ]
+nqed.
\ No newline at end of file
-
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
include "topology/igft.ma".
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
include "sets/sets.ma".
-ndefinition binary_morph_setoid : setoid → setoid → setoid → setoid.
-#S1; #S2; #T; @ (binary_morphism S1 S2 T); @;
-##[ #f; #g; napply (∀x,y. f x y = g x y);
-##| #f; #x; #y; napply #;
-##| #f; #g; #H; #x; #y; napply ((H x y)^-1);
-##| #f; #g; #h; #H1; #H2; #x; #y; napply (trans … (H1 …) (H2 …)); ##]
-nqed.
-
-ndefinition unary_morph_setoid : setoid → setoid → setoid.
-#S1; #S2; @ (unary_morphism S1 S2); @;
-##[ #f; #g; napply (∀x. f x = g x);
-##| #f; #x; napply #;
-##| #f; #g; #H; #x; napply ((H x)^-1);
-##| #f; #g; #h; #H1; #H2; #x; napply (trans … (H1 …) (H2 …)); ##]
-nqed.
-
nrecord category : Type[2] ≝
{ objs:> Type[1];
arrows: objs → objs → setoid;
id: ∀o:objs. arrows o o;
- comp: ∀o1,o2,o3. binary_morphism (arrows o1 o2) (arrows o2 o3) (arrows o1 o3);
+ comp: ∀o1,o2,o3. unary_morphism (arrows o1 o2) (unary_morph_setoid (arrows o2 o3) (arrows o1 o3));
comp_assoc: ∀o1,o2,o3,o4. ∀a12,a23,a34.
comp o1 o3 o4 (comp o1 o2 o3 a12 a23) a34 = comp o1 o2 o4 a12 (comp o2 o3 o4 a23 a34);
id_neutral_left: ∀o1,o2. ∀a: arrows o1 o2. comp ??? (id o1) a = a;
@;
##[ napply setoid;
##| napply unary_morph_setoid;
-##| #o; @ (λx.x); #a; #b; #H; napply H;
-##| #o1; #o2; #o3; @;
- ##[ #f; #g; @(λx.g (f x)); #a; #b; #H; napply (.= (††H)); napply #;
- ##| #f; #g; #f'; #g'; #H1; #H2; nwhd; #x; napply (.= (H2 (f x)));
- napply (.= (†(H1 x))); napply #; ##]
-##| #o1; #o2; #o3; #o4; #f; #g; #h; nwhd; #x; napply #;
-##|##6,7: #o1; #o2; #f; nwhd; #x; napply #; ##]
+##| #o; @ (λx.x); //
+##| #o1; #o2; #o3; napply mk_binary_morphism [ #f; #g; @(λx.g (f x)) ]
+ nnormalize; /3/
+##| nnormalize; /4/
+##|##6,7: nnormalize; /2/ ]
nqed.
unification hint 0 ≔ ;
@ (f i); #a; #Ha; napply H1;
ncut (𝐈𝐦[𝐝 y (f i)] = 𝐈𝐦[𝐝 x i]);
- ##[##2: #E; alias symbol "refl" = "refl".
- alias symbol "prop2" = "prop21 mem".
- alias symbol "invert" = "setoid1 symmetry".
- napply (. (#‡E^-1)); napply Ha; ##]
+ ##[##2: #E; napply (. (#‡E^-1)); napply Ha; ##]
@; #w; #Hw; nwhd;
ncut (𝐈𝐦[𝐝 y (f i)] = 𝐈𝐦[𝐝 x i]);
[1]: http://upsilon.cc/~zack/research/publications/notation.pdf
D*)
-*)
\ No newline at end of file
+*)