definition setleaf: ∀A:Type[0]. nat → (bool → tp → A) → tp → A ≝
λA,v,k,x.
let 〈t,p〉 ≝ x in
- let 〈t',res〉 ≝ setleaf_fun v t p in
+ let 〈t',res〉 ≝ setleaf_fun v t (reverse … p) in
k res 〈t',p〉.
(*****************************)
lemma test: update ? 5 (λres,x. 〈res,x〉) [false;false] 〈example,nil …〉 = ?.
normalize //
-qed.
\ No newline at end of file
+qed.
+
+lemma update_fun_correct:
+ ∀v,p,t.
+ admissible t p = false → setleaf_fun v t p = 〈t,false〉.
+ #v #p elim p normalize [#t #abs destruct ]
+ #hd #tl #IH * normalize // #x1 #x2 cases hd normalize #H >IH //
+qed.
+
+lemma rev_append_cons:
+ ∀A,x,l1,l2. rev_append A (x::l1) [] @ l2 = rev_append A l1 []@x::l2.
+ #A #x #l1 #l2 <(associative_append ?? [?]) <reverse_cons //
+qed.
+
+theorem update_correct1:
+ ∀A,v,p1,p2,k,t.
+ admissible t (reverse … p2 @ p1) = false →
+ update A v k p1 〈t,p2〉 = k false 〈t,[]〉.
+ #A #v #p1 elim p1 normalize
+ [ #p2 #k #t #H >update_fun_correct //
+ | #hd #tl #IH #p2 #k #t cases hd normalize nodelta
+ cases t normalize [1,3:#n|2,4:#x1 #x2] #H >IH // cases (admissible ??) //
+qed.
+
+lemma admissible_leaf_cons:
+ ∀n,p1,dir,p2. admissible (leaf n) (p1@dir::p2) = false.
+ #n #p1 elim p1 //
+qed.
+
+theorem update_correct2:
+ ∀A,v,p1,p2,k,t.
+ admissible t (reverse … p2 @ p1) = true →
+ update A v k p1 〈t,p2〉 = update … v k [] 〈t,reverse … p1 @ p2〉.
+#A #v #p1 elim p1 normalize //
+#dir #ptl #IH #p2 #k #t cases dir normalize nodelta cases t normalize nodelta
+[1,3: #n >admissible_leaf_cons #abs destruct
+|*: #x1 #x2 change with (reverse ? (?::ptl)) in match (rev_append ???); >reverse_cons
+ >associative_append #H normalize >IH //
+
+ normalize change with (reverse ? (true::ptl)) in match (rev_append bool ptl [true]);
+[>(reverse_cons … true ptl) | >(reverse_cons … false ptl)]
+[ >(associative_append ??[?])
+
+
+
+theorem update_correct:
+ ∀v,p1,p2,t.
+ let 〈t',res〉 ≝ setleaf_fun v t (reverse … p1 @ p2) in
+ update ? v (λres,x.〈res,x〉) p2 〈t,p1〉 = 〈res,〈t',nil …〉〉.
+ #v #p1 elim p1 normalize
+ [ #p2 elim p2 normalize
+ [ #x cases x normalize //
+ | #dir #path #IH #x elim x normalize
+ [ #n cases dir normalize
+
+
+ #p2 elim p normalize
+ [ #t elim t normalize //
+ | * normalize
+ [ #path #IH
+
+
+ #path #IH #x elim x normalize
+ [ #v cases res normalize lapply (IH (leaf v)) -IH elim path
+ normalize // * normalize
+ [2: #path' #IH #IH2 @IH
\ No newline at end of file