module E = CicEnvironment
module PEH = ProofEngineHelpers
module PER = ProofEngineReduction
+module Pp = CicPp
module P = ProceduralPreprocess
module Cl = ProceduralClassify
-module M = ProceduralMode
module T = ProceduralTypes
module Cn = ProceduralConversion
let unused_premise = "UNUSED"
-let defined_premise = "DEFINED"
-
let convert st ?name v =
match get_inner_types st v with
| None -> []
| None -> [T.Change (st, et, None, e, "")]
| Some id -> [T.Change (st, et, Some (id, id), e, ""); T.ClearBody (id, "")]
-let get_intro name t =
-try
-match name with
+let get_intro = function
| C.Anonymous -> unused_premise
- | C.Name s ->
- if DTI.does_not_occur 1 (cic t) then unused_premise else s
-with Invalid_argument _ -> failwith "A2P.get_intro"
+ | C.Name s -> s
let mk_intros st script =
try
T.Intros (Some count, List.rev st.intros, "") :: script
with Invalid_argument _ -> failwith "A2P.mk_intros"
-let rec mk_atomic st dtext what =
- if T.is_atomic what then
- match what with
- | C.ARel (_, _, _, name) -> convert st ~name what, what
- | _ -> [], what
- else
- let name = defined_premise in
- let script = convert st ~name what in
- script @ mk_fwd_proof st dtext name what, T.mk_arel 0 name
+let rec mk_arg st = function
+ | C.ARel (_, _, _, name) as what -> convert st ~name what, what
+ | what -> [], what
and mk_fwd_rewrite st dtext name tl direction =
assert (List.length tl = 6);
let e = Cn.mk_pattern 1 predicate in
match where with
| C.ARel (_, _, _, premise) ->
- let script, what = mk_atomic st dtext what in
+ let script, what = mk_arg st what in
T.Rewrite (direction, what, Some (premise, name), e, dtext) :: script
| _ -> assert false
[T.Rewrite (direction, what, None, e, dtext); T.Branch (qs, "")]
and mk_fwd_proof st dtext name = function
- | C.ALetIn (_, n, v, t) ->
- let entry = Some (n, C.Def (cic v, None)) in
- let intro = get_intro n t in
- let qt = mk_fwd_proof (add st entry intro) dtext name t in
- let qv = mk_fwd_proof st "" intro v in
- List.append qt qv
| C.AAppl (_, hd :: tl) as v ->
if is_fwd_rewrite_right hd tl then mk_fwd_rewrite st dtext name tl true else
if is_fwd_rewrite_left hd tl then mk_fwd_rewrite st dtext name tl false else
let ty = get_type "TC1" st hd in
begin match get_inner_types st v with
- | Some (ity, _) when M.bkd st.context ty ->
+ | Some (ity, _) ->
let qs = [[T.Id ""]; mk_proof (next st) v] in
[T.Branch (qs, ""); T.Cut (name, ity, dtext)]
- | _ ->
+ | _ ->
let (classes, rc) as h = Cl.classify st.context ty in
let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in
[T.LetIn (name, v, dtext ^ text)]
and mk_proof st = function
| C.ALambda (_, name, v, t) ->
let entry = Some (name, C.Decl (cic v)) in
- let intro = get_intro name t in
+ let intro = get_intro name in
mk_proof (add st entry intro) t
| C.ALetIn (_, name, v, t) as what ->
let proceed, dtext = test_depth st in
let script = if proceed then
let entry = Some (name, C.Def (cic v, None)) in
- let intro = get_intro name t in
+ let intro = get_intro name in
let q = mk_proof (next (add st entry intro)) t in
List.rev_append (mk_fwd_proof st dtext intro v) q
else
let script = if proceed then
let ty = get_type "TC2" st hd in
let (classes, rc) as h = Cl.classify st.context ty in
- let premises, _ = PEH.split_with_whd (st.context, ty) in
- assert (List.length classes - List.length tl = 0);
+ let decurry = List.length classes - List.length tl in
+ if decurry <> 0 then begin
+ let msg = Printf.sprintf "Decurry: %i\nTerm: %s\nContext: %s"
+ decurry (Pp.ppterm (cic t)) (Pp.ppcontext st.context)
+ in
+ HLog.warn msg; assert false
+ end;
let synth = I.S.singleton 0 in
let text = Printf.sprintf "%u %s" (List.length classes) (Cl.to_string h) in
match rc with
- | Some (i, j) when i > 1 && i <= List.length classes && M.is_eliminator premises ->
+ | Some (i, j) ->
let classes, tl, _, what = split2_last classes tl in
- let script, what = mk_atomic st dtext what in
+ let script, what = mk_arg st what in
let synth = I.S.add 1 synth in
let qs = mk_bkd_proofs (next st) synth classes tl in
if is_rewrite_right hd then
else
let l = succ (List.length tl) in
let predicate = List.nth tl (l - i) in
- let e = Cn.mk_pattern j predicate in
+ let e = Cn.mk_pattern 0 (T.mk_arel 1 "") (* j predicate *) in
let using = Some hd in
List.rev script @ convert st t @
[T.Elim (what, using, e, dtext ^ text); T.Branch (qs, "")]
- | _ ->
+ | None ->
let qs = mk_bkd_proofs (next st) synth classes tl in
- let script, hd = mk_atomic st dtext hd in
+ let script, hd = mk_arg st hd in
List.rev script @ convert st t @
[T.Apply (hd, dtext ^ text); T.Branch (qs, "")]
else
and mk_bkd_proofs st synth classes ts =
try
let _, dtext = test_depth st in
- let aux inv v =
+ let aux (inv, _) v =
if I.overlaps synth inv then None else
if I.S.is_empty inv then Some (mk_proof st v) else
Some [T.Apply (v, dtext ^ "dependent")]
module I = CicInspect
module PEH = ProofEngineHelpers
+type dependence = I.S.t * bool
+
type conclusion = (int * int) option
(* debugging ****************************************************************)
-let string_of_entry inverse =
- if I.S.mem 0 inverse then "C" else
+let string_of_entry (inverse, b) =
+ if I.S.mem 0 inverse then begin if b then "CF" else "C" end else
if I.S.is_empty inverse then "I" else "P"
let to_string (classes, rc) =
(****************************************************************************)
-let id x = x
+let identity x = x
-let classify_conclusion = function
- | _, C.Rel i -> Some (i, 0)
- | _, C.Appl (C.Rel i :: tl) -> Some (i, List.length tl)
- | _ -> None
+let fst3 (x, _, _) = x
+let classify_conclusion vs =
+ let rec get_argsno = function
+ | c, C.Appl (t :: vs) ->
+ let hd, argsno = get_argsno (c, t) in
+ hd, argsno + List.length vs
+ | _, t -> t, 0
+ in
+ let inside i = i > 1 && i <= List.length vs in
+ match vs with
+ | v0 :: v1 :: _ ->
+ let hd0, argsno0 = get_argsno v0 in
+ let hd1, argsno1 = get_argsno v1 in
+ begin match hd0, hd1 with
+ | C.Rel i, C.MutInd _ when inside i -> Some (i, argsno0)
+ | _ -> None
+ end
+ | _ -> None
+
let classify c t =
try
let vs, h = PEH.split_with_whd (c, t) in
- let rc = classify_conclusion (List.hd vs) in
- let map (b, h) (_, v) = (I.get_rels_from_premise h v, I.S.empty) :: b, succ h in
+ let rc = classify_conclusion vs in
+ let map (b, h) (c, v) =
+ let _, argsno = PEH.split_with_whd (c, v) in
+ (I.get_rels_from_premise h v, I.S.empty, argsno > 0) :: b, succ h
+ in
let l, h = List.fold_left map ([], 0) vs in
let b = Array.of_list (List.rev l) in
let mk_closure b h =
- let map j = if j < h then I.S.union (fst b.(j)) else id in
+ let map j = if j < h then I.S.union (fst3 b.(j)) else identity in
for i = pred h downto 0 do
- let direct, unused = b.(i) in
- b.(i) <- I.S.fold map direct direct, unused
+ let direct, unused, fa = b.(i) in
+ b.(i) <- I.S.fold map direct direct, unused, fa
done; b
in
let b = mk_closure b h in
if I.S.is_empty direct then () else
let j = I.S.choose direct in
if j < h then
- let unused, inverse = b.(j) in
- b.(j) <- unused, I.S.add i inverse
+ let unused, inverse, fa = b.(j) in
+ b.(j) <- unused, I.S.add i inverse, fa
else ();
mk_inverse i (I.S.remove j direct)
in
- let map i (direct, _) = mk_inverse i direct in
+ let map i (direct, _, _) = mk_inverse i direct in
Array.iteri map b;
(* out_table b; *)
- List.rev_map snd (List.tl (Array.to_list b)), rc
+ let extract (x, y, z) = y, z in
+ List.rev_map extract (List.tl (Array.to_list b)), rc
with Invalid_argument _ -> failwith "Classify.classify"
module HEL = HExtlib
module PEH = ProofEngineHelpers
+module Cl = ProceduralClassify
+
(* helper functions *********************************************************)
+let rec list_map_cps g map = function
+ | [] -> g []
+ | hd :: tl ->
+ let h hd =
+ let g tl = g (hd :: tl) in
+ list_map_cps g map tl
+ in
+ map h hd
+
let identity x = x
let comp f g x = f (g x)
-let get_type c t =
- try let ty, _ = TC.type_of_aux' [] c t Un.empty_ugraph in ty
- with e ->
- Printf.eprintf "TC: context: %s\n" (Pp.ppcontext c);
- Printf.eprintf "TC: term : %s\n" (Pp.ppterm t);
- raise e
-
let refine c t =
try let t, _, _, _ = Rf.type_of_aux' [] c t Un.empty_ugraph in t
with e ->
Printf.eprintf "Ref: term : %s\n" (Pp.ppterm t);
raise e
+let get_type c t =
+ try let ty, _ = TC.type_of_aux' [] c t Un.empty_ugraph in ty
+ with e ->
+ Printf.eprintf "TC: context: %s\n" (Pp.ppcontext c);
+ Printf.eprintf "TC: term : %s\n" (Pp.ppterm t);
+ raise e
+
let get_tail c t =
match PEH.split_with_whd (c, t) with
| (_, hd) :: _, _ -> hd
| C.MutConstruct _ -> false
| _ -> true
-let clear_absts m =
- let rec aux k n = function
- | C.Lambda (s, v, t) when k > 0 ->
- C.Lambda (s, v, aux (pred k) n t)
- | C.Lambda (_, _, t) when n > 0 ->
- aux 0 (pred n) (S.lift (-1) t)
- | t when n > 0 ->
- Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t);
- assert false
- | t -> t
- in
- aux m
-
-let rec add_abst k = function
- | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t)
- | t when k > 0 -> assert false
- | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t)
-
let get_ind_type uri tyno =
match E.get_obj Un.empty_ugraph uri with
| C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, List.nth tys tyno
| _ -> assert false
-let get_ind_parameters c t =
- let ty = get_type c t in
- let ps = match get_tail c ty with
- | C.MutInd _ -> []
- | C.Appl (C.MutInd _ :: args) -> args
- | _ -> assert false
- in
- let disp = match get_tail c (get_type c ty) with
- | C.Sort C.Prop -> 0
- | C.Sort _ -> 1
- | _ -> assert false
- in
- ps, disp
-
let get_default_eliminator context uri tyno ty =
let _, (name, _, _, _) = get_ind_type uri tyno in
let ext = match get_tail context (get_type context ty) with
let uri = UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in
C.Const (uri, [])
-let add g htbl t proof decurry =
- if proof then C.CicHash.add htbl t decurry;
- g t proof decurry
-
-let find g htbl t =
- try
- let decurry = C.CicHash.find htbl t in g t true decurry
- with Not_found -> g t false 0
-
-(* term preprocessing *******************************************************)
+let get_ind_parameters c t =
+ let ty = get_type c t in
+ let ps = match get_tail c ty with
+ | C.MutInd _ -> []
+ | C.Appl (C.MutInd _ :: args) -> args
+ | _ -> assert false
+ in
+ let disp = match get_tail c (get_type c ty) with
+ | C.Sort C.Prop -> 0
+ | C.Sort _ -> 1
+ | _ -> assert false
+ in
+ ps, disp
-let expanded_premise = "EXPANDED"
+(* term preprocessing: optomization 1 ***************************************)
let defined_premise = "DEFINED"
-let eta_expand g tys t =
- assert (tys <> []);
- let name i = Printf.sprintf "%s%u" expanded_premise i in
- let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in
- let arg i = C.Rel (succ i) in
- let rec aux i f a = function
- | [] -> f, a
- | (_, ty) :: tl -> aux (succ i) (comp f (lambda i ty)) (arg i :: a) tl
- in
- let n = List.length tys in
- let absts, args = aux 0 identity [] tys in
- let t = match S.lift n t with
- | C.Appl ts -> C.Appl (ts @ args)
- | t -> C.Appl (t :: args)
- in
- g (absts t)
+let define c v =
+ let name = C.Name defined_premise in
+ C.LetIn (name, v, C.Rel 1)
-let get_tys c decurry =
- let rec aux n = function
-(* | C.Appl (hd :: tl) -> aux (n + List.length tl) hd *)
- | t ->
- let tys, _ = PEH.split_with_whd (c, get_type c t) in
- let _, tys = HEL.split_nth n (List.rev tys) in
- let tys, _ = HEL.split_nth decurry tys in
- tys
- in
- aux 0
-
-let eta_fix c t proof decurry =
- let rec aux g c = function
- | C.LetIn (name, v, t) ->
- let g t = g (C.LetIn (name, v, t)) in
- let entry = Some (name, C.Def (v, None)) in
- aux g (entry :: c) t
- | t -> eta_expand g (get_tys c decurry t) t
+let clear_absts m =
+ let rec aux k n = function
+ | C.Lambda (s, v, t) when k > 0 ->
+ C.Lambda (s, v, aux (pred k) n t)
+ | C.Lambda (_, _, t) when n > 0 ->
+ aux 0 (pred n) (S.lift (-1) t)
+ | t when n > 0 ->
+ Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t);
+ assert false
+ | t -> t
in
- if proof && decurry > 0 then aux identity c t else t
-
-let rec pp_cast g ht es c t v =
- if true then pp_proof g ht es c t else find g ht t
+ aux m
-and pp_lambda g ht es c name v t =
- let name = if DTI.does_not_occur 1 t then C.Anonymous else name in
- let entry = Some (name, C.Decl v) in
- let g t _ decurry =
- let t = eta_fix (entry :: c) t true decurry in
- g (C.Lambda (name, v, t)) true 0 in
- if true then pp_proof g ht es (entry :: c) t else find g ht t
+let rec add_abst k = function
+ | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t)
+ | t when k > 0 -> assert false
+ | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t)
-and pp_letin g ht es c name v t =
+let rec opt1_letin g es c name v t =
let entry = Some (name, C.Def (v, None)) in
- let g t _ decurry =
- if DTI.does_not_occur 1 t then g (S.lift (-1) t) true decurry else
- let g v proof d = match v with
- | C.LetIn (mame, w, u) when proof ->
- let x = C.LetIn (mame, w, C.LetIn (name, u, S.lift_from 2 1 t)) in
- pp_proof g ht false c x
+ let g t =
+ if DTI.does_not_occur 1 t then begin
+ HLog.warn "Optimizer: remove 1"; g (S.lift (-1) t)
+ end else
+ let g = function
+ | C.LetIn (nname, vv, tt) when is_proof c v ->
+ let x = C.LetIn (nname, vv, C.LetIn (name, tt, S.lift_from 2 1 t)) in
+ HLog.warn "Optimizer: swap 1"; opt1_proof g false c x
| v ->
- let v = eta_fix c v proof d in
- g (C.LetIn (name, v, t)) true decurry
+ g (C.LetIn (name, v, t))
in
- if true then pp_term g ht es c v else find g ht v
+ if es then opt1_term g es c v else g v
+ in
+ if es then opt1_proof g es (entry :: c) t else g t
+
+and opt1_lambda g es c name w t =
+ let entry = Some (name, C.Decl w) in
+ let g t =
+ let name = if DTI.does_not_occur 1 t then C.Anonymous else name in
+ g (C.Lambda (name, w, t))
in
- if true then pp_proof g ht es (entry :: c) t else find g ht t
-
-and pp_appl_one g ht es c t v =
- let g t _ decurry =
- let g v proof d =
- match t, v with
- | t, C.LetIn (mame, w, u) when proof ->
- let x = C.LetIn (mame, w, C.Appl [S.lift 1 t; u]) in
- pp_proof g ht false c x
- | C.LetIn (mame, w, u), v ->
- let x = C.LetIn (mame, w, C.Appl [u; S.lift 1 v]) in
- pp_proof g ht false c x
- | C.Appl ts, v when decurry > 0 ->
- let v = eta_fix c v proof d in
- g (C.Appl (List.append ts [v])) true (pred decurry)
- | t, v when is_not_atomic t ->
- let mame = C.Name defined_premise in
- let x = C.LetIn (mame, t, C.Appl [C.Rel 1; S.lift 1 v]) in
- pp_proof g ht false c x
- | t, v ->
- let v = eta_fix c v proof d in
- g (C.Appl [t; v]) true (pred decurry)
+ if es then opt1_proof g es (entry :: c) t else g t
+
+and opt1_appl g es c t vs =
+ let g vs =
+ let g = function
+ | C.LetIn (mame, vv, tt) ->
+ let vs = List.map (S.lift 1) vs in
+ let x = C.LetIn (mame, vv, C.Appl (tt :: vs)) in
+ HLog.warn "Optimizer: swap 2"; opt1_proof g false c x
+ | C.Lambda (name, ww, tt) ->
+ let v, vs = List.hd vs, List.tl vs in
+ let x = C.Appl (C.LetIn (name, v, tt) :: vs) in
+ HLog.warn "Optimizer: remove 2"; opt1_proof g false c x
+ | C.Appl vvs ->
+ let x = C.Appl (vvs @ vs) in
+ HLog.warn "Optimizer: nested application"; opt1_proof g false c x
+ | t ->
+ let rec aux d rvs = function
+ | [], _ ->
+ let x = C.Appl (t :: List.rev rvs) in
+ if d then opt1_proof g false c x else g x
+ | v :: vs, (c, b) :: cs ->
+ if is_not_atomic v && I.S.mem 0 c && b then begin
+ HLog.warn "Optimizer: anticipate 1";
+ aux true (define c v :: rvs) (vs, cs)
+ end else
+ aux d (v :: rvs) (vs, cs)
+ | _, [] -> assert false
+ in
+ let h () =
+ let classes, conclusion = Cl.classify c (get_type c t) in
+ let csno, vsno = List.length classes, List.length vs in
+ if csno < vsno && csno > 0 then
+ let vvs, vs = HEL.split_nth csno vs in
+ let x = C.Appl (define c (C.Appl (t :: vvs)) :: vs) in
+ HLog.warn "Optimizer: anticipate 2"; opt1_proof g false c x
+ else match conclusion, List.rev vs with
+ | Some _, rv :: rvs when csno = vsno && is_not_atomic rv ->
+ let x = C.Appl (t :: List.rev rvs @ [define c rv]) in
+ HLog.warn "Optimizer: anticipate 3"; opt1_proof g false c x
+ | Some _, _ ->
+ g (C.Appl (t :: vs))
+ | None, _ ->
+ if csno > 0 then aux false [] (vs, classes)
+ else g (C.Appl (t :: vs))
+ in
+ let rec aux h prev = function
+ | C.LetIn (name, vv, tt) :: vs ->
+ let t = S.lift 1 t in
+ let prev = List.map (S.lift 1) prev in
+ let vs = List.map (S.lift 1) vs in
+ let y = C.Appl (t :: List.rev prev @ tt :: vs) in
+ let x = C.LetIn (name, vv, y) in
+ HLog.warn "Optimizer: swap 3"; opt1_proof g false c x
+ | v :: vs -> aux h (v :: prev) vs
+ | [] -> h ()
+ in
+ aux h [] vs
in
- if true then pp_term g ht es c v else find g ht v
+ if es then opt1_proof g es c t else g t
in
- if true then pp_proof g ht es c t else find g ht t
-
-and pp_appl g ht es c t = function
- | [] -> pp_proof g ht es c t
- | [v] -> pp_appl_one g ht es c t v
- | v1 :: v2 :: vs ->
- let x = C.Appl (C.Appl [t; v1] :: v2 :: vs) in
- pp_proof g ht es c x
+ if es then list_map_cps g (fun h -> opt1_term h es c) vs else g vs
-and pp_atomic g ht es c t =
- let _, premsno = PEH.split_with_whd (c, get_type c t) in
- g t true premsno
-
-and pp_mutcase g ht es c uri tyno outty arg cases =
+and opt1_mutcase g es c uri tyno outty arg cases =
let eliminator = get_default_eliminator c uri tyno outty in
let lpsno, (_, _, _, constructors) = get_ind_type uri tyno in
let ps, sort_disp = get_ind_parameters c arg in
let lifted_cases = List.map2 map2 cases constructors in
let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in
let x = refine c (C.Appl args) in
- pp_proof g ht es c x
-
-and pp_proof g ht es c t =
-(* Printf.eprintf "IN: |- %s\n" (*CicPp.ppcontext c*) (CicPp.ppterm t);
- let g t proof decurry =
- Printf.eprintf "OUT: %b %u |- %s\n" proof decurry (CicPp.ppterm t);
- g t proof decurry
- in *)
-(* let g t proof decurry = add g ht t proof decurry in *)
- match t with
- | C.Cast (t, v) -> pp_cast g ht es c t v
- | C.Lambda (name, v, t) -> pp_lambda g ht es c name v t
- | C.LetIn (name, v, t) -> pp_letin g ht es c name v t
- | C.Appl (t :: vs) -> pp_appl g ht es c t vs
- | C.MutCase (u, n, t, v, ws) -> pp_mutcase g ht es c u n t v ws
- | t -> pp_atomic g ht es c t
-
-and pp_term g ht es c t =
- if is_proof c t then pp_proof g ht es c t else g t false 0
+ HLog.warn "Optimizer: remove 3"; opt1_proof g es c x
+
+and opt1_cast g es c t w =
+ let g t = HLog.warn "Optimizer: remove 4"; g t in
+ if es then opt1_proof g es c t else g t
+
+and opt1_other g es c t = g t
+
+and opt1_proof g es c = function
+ | C.LetIn (name, v, t) -> opt1_letin g es c name v t
+ | C.Lambda (name, w, t) -> opt1_lambda g es c name w t
+ | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs)
+ | C.Appl [t] -> opt1_proof g es c t
+ | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws
+ | C.Cast (t, w) -> opt1_cast g es c t w
+ | t -> opt1_other g es c t
+
+and opt1_term g es c t =
+ if is_proof c t then opt1_proof g es c t else g t
+
+(* term preprocessing: optomization 2 ***************************************)
+
+let expanded_premise = "EXPANDED"
+
+let eta_expand g tys t =
+ assert (tys <> []);
+ let name i = Printf.sprintf "%s%u" expanded_premise i in
+ let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in
+ let arg i = C.Rel (succ i) in
+ let rec aux i f a = function
+ | [] -> f, a
+ | (_, ty) :: tl -> aux (succ i) (comp f (lambda i ty)) (arg i :: a) tl
+ in
+ let n = List.length tys in
+ let absts, args = aux 0 identity [] tys in
+ let t = match S.lift n t with
+ | C.Appl ts -> C.Appl (ts @ args)
+ | t -> C.Appl (t :: args)
+ in
+ g (absts t)
+
+let rec opt2_letin g c name v t =
+ let entry = Some (name, C.Def (v, None)) in
+ let g t =
+ let g v = g (C.LetIn (name, v, t)) in
+ opt2_term g c v
+ in
+ opt2_proof g (entry :: c) t
+
+and opt2_lambda g c name w t =
+ let entry = Some (name, C.Decl w) in
+ let g t = g (C.Lambda (name, w, t)) in
+ opt2_proof g (entry :: c) t
+
+and opt2_appl g c t vs =
+ let g vs =
+ let x = C.Appl (t :: vs) in
+ let vsno = List.length vs in
+ let _, csno = PEH.split_with_whd (c, get_type c t) in
+ if vsno < csno then
+ let tys, _ = PEH.split_with_whd (c, get_type c x) in
+ let tys = List.rev (List.tl tys) in
+ let tys, _ = HEL.split_nth (csno - vsno) tys in
+ HLog.warn "Optimizer: eta 1"; eta_expand g tys x
+ else g x
+ in
+ list_map_cps g (fun h -> opt2_term h c) vs
+
+and opt2_other g c t =
+ let tys, csno = PEH.split_with_whd (c, get_type c t) in
+ if csno > 0 then begin
+ let tys = List.rev (List.tl tys) in
+ HLog.warn "Optimizer: eta 2"; eta_expand g tys t
+ end else g t
+
+and opt2_proof g c = function
+ | C.LetIn (name, v, t) -> opt2_letin g c name v t
+ | C.Lambda (name, w, t) -> opt2_lambda g c name w t
+ | C.Appl (t :: vs) -> opt2_appl g c t vs
+ | t -> opt2_other g c t
+
+and opt2_term g c t =
+ if is_proof c t then opt2_proof g c t else g t
(* object preprocessing *****************************************************)
let pp_obj = function
| C.Constant (name, Some bo, ty, pars, attrs) ->
- let g bo proof decurry =
- let bo = eta_fix [] bo proof decurry in
- C.Constant (name, Some bo, ty, pars, attrs)
- in
- let ht = C.CicHash.create 1 in
+ let g bo = C.Constant (name, Some bo, ty, pars, attrs) in
Printf.eprintf "BEGIN: %s\n" name;
- begin try pp_term g ht true [] bo
+ begin try opt1_term (opt2_term g []) true [] bo
with e -> failwith ("PPP: " ^ Printexc.to_string e) end
| obj -> obj