(current ? (nth i ? int (niltape ?)) ≠ current ? (nth j ? int (niltape ?)) ∨
current ? (nth i ? int (niltape ?)) = None ? ∨
current ? (nth j ? int (niltape ?)) = None ?) → outt = int) ∧
- (∀ls,x,xs,ci,rs,ls0,cj,rs0.
+ (∀ls,x,xs,ci,rs,ls0,rs0.
nth i ? int (niltape ?) = midtape sig ls x (xs@ci::rs) →
- nth j ? int (niltape ?) = midtape sig ls0 x (xs@cj::rs0) →
+ nth j ? int (niltape ?) = midtape sig ls0 x (xs@rs0) →
(∀c0. memb ? c0 (x::xs) = true → is_endc c0 = false) →
+ (rs0 = [ ] →
+ outt = change_vec ??
+ (change_vec ?? int (midtape sig (reverse ? xs@x::ls) ci rs) i)
+ (mk_tape sig (reverse ? xs@x::ls0) (None ?) []) j) ∨
+ ∀cj,rs1.rs0 = cj::rs1 →
(is_endc ci = true ∨ ci ≠ cj) →
outt = change_vec ??
(change_vec ?? int (midtape sig (reverse ? xs@x::ls) ci rs) i)
definition Rtc_multi_false ≝
λalpha,test,n,i.λt1,t2:Vector ? (S n).
(∀c. current alpha (nth i ? t1 (niltape ?)) = Some ? c → test c = false) ∧ t2 = t1.
-
+
+definition R_match_step_false ≝
+ λsrc,dst,sig,n,is_endc.λint,outt: Vector (tape sig) (S n).
+ ∀ls,x,xs,end,rs.
+ nth src ? int (niltape ?) = midtape sig ls x (xs@end::rs) →
+ (∀c0. memb ? c0 (x::xs) = true → is_endc c0 = false) → is_endc end = true →
+ ((current sig (nth dst (tape sig) int (niltape sig)) = None ? ) ∧ outt = int) ∨
+ (∃ls0,rs0.
+ nth dst ? int (niltape ?) = midtape sig ls0 x (xs@rs0) ∧
+ ∀rsj,end,c.
+ rs0 = c::rsj →
+ outt = change_vec ??
+ (change_vec ?? int (midtape sig (reverse ? xs@x::ls) end rs) src)
+ (midtape sig (reverse ? xs@x::ls0) c rsj) dst).
+(*
definition R_match_step_false ≝
λsrc,dst,sig,n,is_endc.λint,outt: Vector (tape sig) (S n).
(((∃x.current ? (nth src ? int (niltape ?)) = Some ? x ∧ is_endc x = true) ∨
outt = change_vec ??
(change_vec ?? int (midtape sig (reverse ? xs@x::ls) end rsi) src)
(midtape sig (reverse ? xs@x::ls0) c rsj) dst).
+*)
definition R_match_step_true ≝
λsrc,dst,sig,n,is_startc,is_endc.λint,outt: Vector (tape sig) (S n).
normalize #H destruct (H) // ]
]
|#intape #outtape #ta * #Hcomp1 #Hcomp2 * #tb * * #Hc #Htb
+ whd in ⊢ (%→?); #Hout >Hout >Htb whd
+ #ls #c_src #xs #end #rs #Hmid_src #Hnotend #Hend
+ lapply (current_to_midtape sig (nth dst ? intape (niltape ?)))
+ cases (current … (nth dst ? intape (niltape ?))) in Hcomp1;
+ [#Hcomp1 #_ %1 % [% | @Hcomp1 %2 %2 % ]
+ |#c_dst cases (true_or_false (c_src == c_dst)) #Hceq
+ [#_ #Hmid_dst cases (Hmid_dst c_dst (refl …)) -Hmid_dst
+ #ls_dst * #rs_dst #Hmid_dst %2
+ cases (comp_list … (xs@end::rs) rs_dst is_endc) #xs1 * #rsi * #rsj * * *
+ #Hrs_src #Hrs_dst #Hnotendc #Hneq
+ %{ls_dst} %{rsj} %
+ [<Hrs_dst >(\P Hceq) // ]]
+ #rsi0 #rsj0 #end #c #Hend #Hc_dst
+ >Hrs_src in Hmid_src; >Hend #Hmid_src
+ >Hrs_dst in Hmid_dst; >Hc_dst <(\P Hceq) #Hmid_dst
+ cut (is_endc end = true ∨ end ≠ c)
+ [cases (Hneq … Hend) /2/ -Hneq #Hneq %2 @(Hneq … Hc_dst) ] #Hneq
+ lapply (Hcomp2 … Hmid_src Hmid_dst ? Hneq)
+ [#c0 #Hc0 cases (orb_true_l … Hc0) -Hc0 #Hc0
+ [ >(\P Hc0) //
+ | @Hnotendc // ]
+ ]
+ -Hcomp2 #Hcomp2 <Hcomp2
+ % // % [
+ >Hcomp2 in Hc; >nth_change_vec_neq [|@sym_not_eq //]
+ >nth_change_vec // #H lapply (H ? (refl …))
+ cases (is_endc end) [|normalize #H destruct (H) ]
+ #_ % // #c0 #Hc0 cases (orb_true_l … Hc0) -Hc0 #Hc0
+ [ >(\P Hc0) // | @Hnotendc // ]
+ |@Hmid_dst]
+ ]
+ |#_ #Hcomp1 #Hsrc cases (Hsrc ? (refl ??)) -Hsrc #ls * #rs #Hsrc
+ %1 %
+ [% % %{c_src} % // lapply (Hc c_src) -Hc >Hcomp1
+ [| %2 % % @(not_to_not ??? (\Pf Hceq)) #H destruct (H) // ]
+ cases (is_endc c_src) //
+ >Hsrc #Hc lapply (Hc (refl ??)) normalize #H destruct (H)
+ |@Hcomp1 %2 %1 %1 @(not_to_not ??? (\Pf Hceq)) #H destruct (H) //
+ ]
+ ]
+ ]
+ ]
+qed.
+
+#intape #outtape #ta * #Hcomp1 #Hcomp2 * #tb * * #Hc #Htb
whd in ⊢ (%→?); #Hout >Hout >Htb whd
lapply (current_to_midtape sig (nth src ? intape (niltape ?)))
cases (current … (nth src ? intape (niltape ?))) in Hcomp1;
(∀z. memb ? z (x::xs) = true → is_endc x = false) →
nth i ? int (niltape ?) = midtape sig ls x (xs@ci::rs) →
nth j ? int (niltape ?) = midtape sig ls0 x0 rs0 →
- (â\88\83l,l1.x0::rs0 = l@x::xs@l1 â\86\92
+ (â\88\83l,l1.x0::rs0 = l@x::xs@l1 â\88§
∀cj,l2.l1=cj::l2 →
outt = change_vec ??
(change_vec ?? int (midtape sig (reverse ? xs@x::ls) ci rs) i)
(midtape sig ((reverse ? (l@x::xs))@ls0) cj l2) j) ∨
∀l,l1.x0::rs0 ≠ l@x::xs@l1).
+(*
axiom sub_list_dec: ∀A.∀l,ls:list A.
∃l1,l2. l = l1@ls@l2 ∨ ∀l1,l2. l ≠ l1@ls@l2.
+*)
lemma wsem_match_m : ∀src,dst,sig,n,is_startc,is_endc.
src ≠ dst → src < S n → dst < S n →
]
]
]
-|
+|#tc #td #te #Hd #Hstar #IH #He lapply (IH He) -IH *
+ #IH1 #IH2 % [@IH1]
cases (comp_list ? (x1::xs1@ci::rsi) (x2::rs2) is_endc)