| intros; apply ((†H)‡(†H1));]
qed.
+interpretation "concrete_space binary ↓" 'fintersects a b = (fun1 _ _ _ (binary_downarrow _) a b).
+
record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝
{ rp:> arrows1 ? CS1 CS2;
respects_converges:
- ∀b,c. (rp\sub\c)⎻ (Ext⎽CS2 (b ↓ c)) = ?(*
- extS ?? rp \sub\c (BPextS CS2 (b ↓ c)) =
- BPextS CS1 ((extS ?? rp \sub\f b) ↓ (extS ?? rp \sub\f c));
+ ∀b,c. eq1 ? (rp\sub\c⎻ (Ext⎽CS2 (b ↓ c))) (Ext⎽CS1 (rp\sub\f⎻ b ↓ rp\sub\f⎻ c));
respects_all_covered:
- extS ?? rp\sub\c (BPextS CS2 (form CS2)) = BPextS CS1 (form CS1)*)
+ eq1 ? (rp\sub\c⎻ (Ext⎽CS2 (oa_one (form CS2))))
+ (Ext⎽CS1 (oa_one (form CS1)))
}.
definition rp' : ∀CS1,CS2. convergent_relation_pair CS1 CS2 → relation_pair CS1 CS2 ≝
coercion rp''.
+definition prop_1_SET :
+ ∀A,B:SET.∀w:arrows1 SET A B.∀a,b:A.eq1 ? a b→eq1 ? (w a) (w b).
+intros; apply (prop_1 A B w a b H);
+qed.
+
+interpretation "SET dagger" 'prop1 h = (prop_1_SET _ _ _ _ _ h).
+
definition convergent_relation_space_composition:
∀o1,o2,o3: concrete_space.
binary_morphism1
[ intros; whd in c c1 ⊢ %;
constructor 1;
[ apply (fun1 ??? (comp1 BP ???)); [apply (bp o2) |*: apply rp; assumption]
- | intros;
- change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c);
- change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? (? ? ? (? ? ? %) ?) ?)))
- with (c1 \sub \f ∘ c \sub \f);
- change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? ? (? ? ? (? ? ? %) ?))))
- with (c1 \sub \f ∘ c \sub \f);
- apply (.= (extS_com ??????));
- apply (.= (†(respects_converges ?????)));
- apply (.= (respects_converges ?????));
- apply (.= (†(((extS_com ??????) \sup -1)‡(extS_com ??????)\sup -1)));
+ | intros;
+ change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (b↓c2))));
+ alias symbol "trans" = "trans1".
+ apply (.= († (respects_converges : ?)));
+ apply (.= (respects_converges : ?));
apply refl1;
- | change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c);
- apply (.= (extS_com ??????));
- apply (.= (†(respects_all_covered ???)));
- apply (.= respects_all_covered ???);
+ | change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (oa_one (form o3)))));
+ apply (.= (†(respects_all_covered :?)));
+ apply (.= (respects_all_covered :?));
apply refl1]
| intros;
- change with (b ∘ a = b' ∘ a');
+ change with (b ∘ a = b' ∘ a');
change in H with (rp'' ?? a = rp'' ?? a');
change in H1 with (rp'' ?? b = rp ?? b');
- apply (.= (H‡H1));
- apply refl1]
+ apply ( (H‡H1));]
qed.
definition CSPA: category1.