include "nat/plus.ma".
include "constructive_connectives.ma".
-record pre_ordered_set (C:Type) : Type ≝
- { le_:C→C→Prop }.
-
-definition carrier_of_pre_ordered_set ≝ λC:Type.λO:pre_ordered_set C.C.
-
-coercion cic:/matita/ordered_sets/carrier_of_pre_ordered_set.con.
-
-definition os_le: ∀C.∀O:pre_ordered_set C.O → O → Prop ≝ le_.
-
-interpretation "Ordered Sets le" 'leq a b =
- (cic:/matita/ordered_sets/os_le.con _ _ a b).
-
definition cotransitive ≝
λC:Type.λle:C→C→Prop.∀x,y,z:C. le x y → le x z ∨ le z y.
definition antisimmetric ≝
λC:Type.λle:C→C→Prop.∀x,y:C. le x y → le y x → x=y.
-record is_order_relation (C) (O:pre_ordered_set C) : Type ≝
- { or_reflexive: reflexive ? (os_le ? O);
- or_transitive: transitive ? (os_le ? O);
- or_antisimmetric: antisimmetric ? (os_le ? O)
+record is_order_relation (C:Type) (le:C→C→Prop) : Type ≝
+ { or_reflexive: reflexive ? le;
+ or_transitive: transitive ? le;
+ or_antisimmetric: antisimmetric ? le
}.
-record ordered_set (C:Type): Type ≝
- { os_pre_ordered_set:> pre_ordered_set C;
- os_order_relation_properties:> is_order_relation ? os_pre_ordered_set
+record ordered_set: Type ≝
+ { os_carrier:> Type;
+ os_le: os_carrier → os_carrier → Prop;
+ os_order_relation_properties:> is_order_relation ? os_le
}.
+interpretation "Ordered Sets le" 'leq a b =
+ (cic:/matita/ordered_sets/os_le.con _ a b).
+
theorem antisimmetric_to_cotransitive_to_transitive:
∀C.∀le:relation C. antisimmetric ? le → cotransitive ? le →
transitive ? le.
].
qed.
-definition is_increasing ≝ λC.λO:ordered_set C.λa:nat→O.∀n:nat.a n ≤ a (S n).
-definition is_decreasing ≝ λC.λO:ordered_set C.λa:nat→O.∀n:nat.a (S n) ≤ a n.
+definition is_increasing ≝ λO:ordered_set.λa:nat→O.∀n:nat.a n ≤ a (S n).
+definition is_decreasing ≝ λO:ordered_set.λa:nat→O.∀n:nat.a (S n) ≤ a n.
-definition is_upper_bound ≝ λC.λO:ordered_set C.λa:nat→O.λu:O.∀n:nat.a n ≤ u.
-definition is_lower_bound ≝ λC.λO:ordered_set C.λa:nat→O.λu:O.∀n:nat.u ≤ a n.
+definition is_upper_bound ≝ λO:ordered_set.λa:nat→O.λu:O.∀n:nat.a n ≤ u.
+definition is_lower_bound ≝ λO:ordered_set.λa:nat→O.λu:O.∀n:nat.u ≤ a n.
-record is_sup (C:Type) (O:ordered_set C) (a:nat→O) (u:O) : Prop ≝
- { sup_upper_bound: is_upper_bound ? O a u;
- sup_least_upper_bound: ∀v:O. is_upper_bound ? O a v → u≤v
+record is_sup (O:ordered_set) (a:nat→O) (u:O) : Prop ≝
+ { sup_upper_bound: is_upper_bound O a u;
+ sup_least_upper_bound: ∀v:O. is_upper_bound O a v → u≤v
}.
-record is_inf (C:Type) (O:ordered_set C) (a:nat→O) (u:O) : Prop ≝
- { inf_lower_bound: is_lower_bound ? O a u;
- inf_greatest_lower_bound: ∀v:O. is_lower_bound ? O a v → v≤u
+record is_inf (O:ordered_set) (a:nat→O) (u:O) : Prop ≝
+ { inf_lower_bound: is_lower_bound O a u;
+ inf_greatest_lower_bound: ∀v:O. is_lower_bound O a v → v≤u
}.
-record is_bounded_below (C:Type) (O:ordered_set C) (a:nat→O) : Type ≝
+record is_bounded_below (O:ordered_set) (a:nat→O) : Type ≝
{ ib_lower_bound: O;
- ib_lower_bound_is_lower_bound: is_lower_bound ? ? a ib_lower_bound
+ ib_lower_bound_is_lower_bound: is_lower_bound ? a ib_lower_bound
}.
-record is_bounded_above (C:Type) (O:ordered_set C) (a:nat→O) : Type ≝
+record is_bounded_above (O:ordered_set) (a:nat→O) : Type ≝
{ ib_upper_bound: O;
- ib_upper_bound_is_upper_bound: is_upper_bound ? ? a ib_upper_bound
+ ib_upper_bound_is_upper_bound: is_upper_bound ? a ib_upper_bound
}.
-record is_bounded (C:Type) (O:ordered_set C) (a:nat→O) : Type ≝
- { ib_bounded_below:> is_bounded_below ? ? a;
- ib_bounded_above:> is_bounded_above ? ? a
+record is_bounded (O:ordered_set) (a:nat→O) : Type ≝
+ { ib_bounded_below:> is_bounded_below ? a;
+ ib_bounded_above:> is_bounded_above ? a
}.
-record bounded_below_sequence (C:Type) (O:ordered_set C) : Type ≝
+record bounded_below_sequence (O:ordered_set) : Type ≝
{ bbs_seq:1> nat→O;
- bbs_is_bounded_below:> is_bounded_below ? ? bbs_seq
+ bbs_is_bounded_below:> is_bounded_below ? bbs_seq
}.
-record bounded_above_sequence (C:Type) (O:ordered_set C) : Type ≝
+record bounded_above_sequence (O:ordered_set) : Type ≝
{ bas_seq:1> nat→O;
- bas_is_bounded_above:> is_bounded_above ? ? bas_seq
+ bas_is_bounded_above:> is_bounded_above ? bas_seq
}.
-record bounded_sequence (C:Type) (O:ordered_set C) : Type ≝
+record bounded_sequence (O:ordered_set) : Type ≝
{ bs_seq:1> nat → O;
- bs_is_bounded_below: is_bounded_below ? ? bs_seq;
- bs_is_bounded_above: is_bounded_above ? ? bs_seq
+ bs_is_bounded_below: is_bounded_below ? bs_seq;
+ bs_is_bounded_above: is_bounded_above ? bs_seq
}.
definition bounded_below_sequence_of_bounded_sequence ≝
- λC.λO:ordered_set C.λb:bounded_sequence ? O.
- mk_bounded_below_sequence ? ? b (bs_is_bounded_below ? ? b).
+ λO:ordered_set.λb:bounded_sequence O.
+ mk_bounded_below_sequence ? b (bs_is_bounded_below ? b).
coercion cic:/matita/ordered_sets/bounded_below_sequence_of_bounded_sequence.con.
definition bounded_above_sequence_of_bounded_sequence ≝
- λC.λO:ordered_set C.λb:bounded_sequence ? O.
- mk_bounded_above_sequence ? ? b (bs_is_bounded_above ? ? b).
+ λO:ordered_set.λb:bounded_sequence O.
+ mk_bounded_above_sequence ? b (bs_is_bounded_above ? b).
coercion cic:/matita/ordered_sets/bounded_above_sequence_of_bounded_sequence.con.
definition lower_bound ≝
- λC.λO:ordered_set C.λb:bounded_below_sequence ? O.
- ib_lower_bound ? ? b (bbs_is_bounded_below ? ? b).
+ λO:ordered_set.λb:bounded_below_sequence O.
+ ib_lower_bound ? b (bbs_is_bounded_below ? b).
lemma lower_bound_is_lower_bound:
- ∀C.∀O:ordered_set C.∀b:bounded_below_sequence ? O.
- is_lower_bound ? ? b (lower_bound ? ? b).
+ ∀O:ordered_set.∀b:bounded_below_sequence O.
+ is_lower_bound ? b (lower_bound ? b).
intros;
unfold lower_bound;
apply ib_lower_bound_is_lower_bound.
qed.
definition upper_bound ≝
- λC.λO:ordered_set C.λb:bounded_above_sequence ? O.
- ib_upper_bound ? ? b (bas_is_bounded_above ? ? b).
+ λO:ordered_set.λb:bounded_above_sequence O.
+ ib_upper_bound ? b (bas_is_bounded_above ? b).
lemma upper_bound_is_upper_bound:
- ∀C.∀O:ordered_set C.∀b:bounded_above_sequence ? O.
- is_upper_bound ? ? b (upper_bound ? ? b).
+ ∀O:ordered_set.∀b:bounded_above_sequence O.
+ is_upper_bound ? b (upper_bound ? b).
intros;
unfold upper_bound;
apply ib_upper_bound_is_upper_bound.
qed.
-record is_dedekind_sigma_complete (C:Type) (O:ordered_set C) : Type ≝
- { dsc_inf: ∀a:nat→O.∀m:O. is_lower_bound ? ? a m → ex ? (λs:O.is_inf ? O a s);
+record is_dedekind_sigma_complete (O:ordered_set) : Type ≝
+ { dsc_inf: ∀a:nat→O.∀m:O. is_lower_bound ? a m → ex ? (λs:O.is_inf O a s);
dsc_inf_proof_irrelevant:
- ∀a:nat→O.∀m,m':O.∀p:is_lower_bound ? ? a m.∀p':is_lower_bound ? ? a m'.
+ ∀a:nat→O.∀m,m':O.∀p:is_lower_bound ? a m.∀p':is_lower_bound ? a m'.
(match dsc_inf a m p with [ ex_intro s _ ⇒ s ]) =
(match dsc_inf a m' p' with [ ex_intro s' _ ⇒ s' ]);
- dsc_sup: ∀a:nat→O.∀m:O. is_upper_bound ? ? a m → ex ? (λs:O.is_sup ? O a s);
+ dsc_sup: ∀a:nat→O.∀m:O. is_upper_bound ? a m → ex ? (λs:O.is_sup O a s);
dsc_sup_proof_irrelevant:
- ∀a:nat→O.∀m,m':O.∀p:is_upper_bound ? ? a m.∀p':is_upper_bound ? ? a m'.
+ ∀a:nat→O.∀m,m':O.∀p:is_upper_bound ? a m.∀p':is_upper_bound ? a m'.
(match dsc_sup a m p with [ ex_intro s _ ⇒ s ]) =
(match dsc_sup a m' p' with [ ex_intro s' _ ⇒ s' ])
}.
-record dedekind_sigma_complete_ordered_set (C:Type) : Type ≝
- { dscos_ordered_set:> ordered_set C;
+record dedekind_sigma_complete_ordered_set : Type ≝
+ { dscos_ordered_set:> ordered_set;
dscos_dedekind_sigma_complete_properties:>
- is_dedekind_sigma_complete ? dscos_ordered_set
+ is_dedekind_sigma_complete dscos_ordered_set
}.
definition inf:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- bounded_below_sequence ? O → O.
+ ∀O:dedekind_sigma_complete_ordered_set.
+ bounded_below_sequence O → O.
intros;
elim
- (dsc_inf ? O (dscos_dedekind_sigma_complete_properties ? O) b);
+ (dsc_inf O (dscos_dedekind_sigma_complete_properties O) b);
[ apply a
- | apply (lower_bound ? ? b)
+ | apply (lower_bound ? b)
| apply lower_bound_is_lower_bound
]
qed.
lemma inf_is_inf:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a:bounded_below_sequence ? O.
- is_inf ? ? a (inf ? ? a).
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a:bounded_below_sequence O.
+ is_inf ? a (inf ? a).
intros;
unfold inf;
simplify;
- elim (dsc_inf C O (dscos_dedekind_sigma_complete_properties C O) a
-(lower_bound C O a) (lower_bound_is_lower_bound C O a));
+ elim (dsc_inf O (dscos_dedekind_sigma_complete_properties O) a
+(lower_bound O a) (lower_bound_is_lower_bound O a));
simplify;
assumption.
qed.
lemma inf_proof_irrelevant:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a,a':bounded_below_sequence ? O.
- bbs_seq ? ? a = bbs_seq ? ? a' →
- inf ? ? a = inf ? ? a'.
- intros 4;
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a,a':bounded_below_sequence O.
+ bbs_seq ? a = bbs_seq ? a' →
+ inf ? a = inf ? a'.
+ intros 3;
elim a 0;
elim a';
simplify in H;
rewrite > H;
intro;
simplify;
- rewrite < (dsc_inf_proof_irrelevant C O O f (ib_lower_bound ? ? f i2)
- (ib_lower_bound ? ? f i) (ib_lower_bound_is_lower_bound ? ? f i2)
- (ib_lower_bound_is_lower_bound ? ? f i));
+ rewrite < (dsc_inf_proof_irrelevant O O f (ib_lower_bound ? f i)
+ (ib_lower_bound ? f i2) (ib_lower_bound_is_lower_bound ? f i)
+ (ib_lower_bound_is_lower_bound ? f i2));
reflexivity.
qed.
definition sup:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- bounded_above_sequence ? O → O.
+ ∀O:dedekind_sigma_complete_ordered_set.
+ bounded_above_sequence O → O.
intros;
elim
- (dsc_sup ? O (dscos_dedekind_sigma_complete_properties ? O) b);
+ (dsc_sup O (dscos_dedekind_sigma_complete_properties O) b);
[ apply a
- | apply (upper_bound ? ? b)
+ | apply (upper_bound ? b)
| apply upper_bound_is_upper_bound
].
qed.
lemma sup_is_sup:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a:bounded_above_sequence ? O.
- is_sup ? ? a (sup ? ? a).
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a:bounded_above_sequence O.
+ is_sup ? a (sup ? a).
intros;
unfold sup;
simplify;
- elim (dsc_sup C O (dscos_dedekind_sigma_complete_properties C O) a
-(upper_bound C O a) (upper_bound_is_upper_bound C O a));
+ elim (dsc_sup O (dscos_dedekind_sigma_complete_properties O) a
+(upper_bound O a) (upper_bound_is_upper_bound O a));
simplify;
assumption.
qed.
lemma sup_proof_irrelevant:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a,a':bounded_above_sequence ? O.
- bas_seq ? ? a = bas_seq ? ? a' →
- sup ? ? a = sup ? ? a'.
- intros 4;
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a,a':bounded_above_sequence O.
+ bas_seq ? a = bas_seq ? a' →
+ sup ? a = sup ? a'.
+ intros 3;
elim a 0;
elim a';
simplify in H;
rewrite > H;
intro;
simplify;
- rewrite < (dsc_sup_proof_irrelevant C O O f (ib_upper_bound ? ? f i2)
- (ib_upper_bound ? ? f i) (ib_upper_bound_is_upper_bound ? ? f i2)
- (ib_upper_bound_is_upper_bound ? ? f i));
+ rewrite < (dsc_sup_proof_irrelevant O O f (ib_upper_bound ? f i2)
+ (ib_upper_bound ? f i) (ib_upper_bound_is_upper_bound ? f i2)
+ (ib_upper_bound_is_upper_bound ? f i));
reflexivity.
qed.
axiom daemon: False.
theorem inf_le_sup:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a:bounded_sequence ? O. inf ? ? a ≤ sup ? ? a.
- intros (C O');
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a:bounded_sequence O. inf ? a ≤ sup ? a.
+ intros (O');
apply (or_transitive ? ? O' ? (a O));
[ elim daemon (*apply (inf_lower_bound ? ? ? ? (inf_is_inf ? ? a))*)
| elim daemon (*apply (sup_upper_bound ? ? ? ? (sup_is_sup ? ? a))*)
qed.
lemma inf_respects_le:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a:bounded_below_sequence ? O.∀m:O.
- is_upper_bound ? ? a m → inf ? ? a ≤ m.
- intros (C O');
- apply (or_transitive ? ? O' ? (sup ? ? (mk_bounded_sequence ? ? a ? ?)));
- [ apply (bbs_is_bounded_below ? ? a)
- | apply (mk_is_bounded_above ? ? ? m H)
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a:bounded_below_sequence O.∀m:O.
+ is_upper_bound ? a m → inf ? a ≤ m.
+ intros (O');
+ apply (or_transitive ? ? O' ? (sup ? (mk_bounded_sequence ? a ? ?)));
+ [ apply (bbs_is_bounded_below ? a)
+ | apply (mk_is_bounded_above ? ? m H)
| apply inf_le_sup
| apply
- (sup_least_upper_bound ? ? ? ?
- (sup_is_sup ? ? (mk_bounded_sequence C O' a a
- (mk_is_bounded_above C O' a m H))));
+ (sup_least_upper_bound ? ? ?
+ (sup_is_sup ? (mk_bounded_sequence O' a a
+ (mk_is_bounded_above O' a m H))));
assumption
].
qed.
definition is_sequentially_monotone ≝
- λC.λO:ordered_set C.λf:O→O.
- ∀a:nat→O.∀p:is_increasing ? ? a.
- is_increasing ? ? (λi.f (a i)).
+ λO:ordered_set.λf:O→O.
+ ∀a:nat→O.∀p:is_increasing ? a.
+ is_increasing ? (λi.f (a i)).
-record is_order_continuous (C)
- (O:dedekind_sigma_complete_ordered_set C) (f:O→O) : Prop
+record is_order_continuous
+ (O:dedekind_sigma_complete_ordered_set) (f:O→O) : Prop
≝
- { ioc_is_sequentially_monotone: is_sequentially_monotone ? ? f;
+ { ioc_is_sequentially_monotone: is_sequentially_monotone ? f;
ioc_is_upper_bound_f_sup:
- ∀a:bounded_above_sequence ? O.
- is_upper_bound ? ? (λi.f (a i)) (f (sup ? ? a));
+ ∀a:bounded_above_sequence O.
+ is_upper_bound ? (λi.f (a i)) (f (sup ? a));
ioc_respects_sup:
- ∀a:bounded_above_sequence ? O.
- is_increasing ? ? a →
- f (sup ? ? a) =
- sup ? ? (mk_bounded_above_sequence ? ? (λi.f (a i))
- (mk_is_bounded_above ? ? ? (f (sup ? ? a))
+ ∀a:bounded_above_sequence O.
+ is_increasing ? a →
+ f (sup ? a) =
+ sup ? (mk_bounded_above_sequence ? (λi.f (a i))
+ (mk_is_bounded_above ? ? (f (sup ? a))
(ioc_is_upper_bound_f_sup a)));
ioc_is_lower_bound_f_inf:
- ∀a:bounded_below_sequence ? O.
- is_lower_bound ? ? (λi.f (a i)) (f (inf ? ? a));
+ ∀a:bounded_below_sequence O.
+ is_lower_bound ? (λi.f (a i)) (f (inf ? a));
ioc_respects_inf:
- ∀a:bounded_below_sequence ? O.
- is_decreasing ? ? a →
- f (inf ? ? a) =
- inf ? ? (mk_bounded_below_sequence ? ? (λi.f (a i))
- (mk_is_bounded_below ? ? ? (f (inf ? ? a))
+ ∀a:bounded_below_sequence O.
+ is_decreasing ? a →
+ f (inf ? a) =
+ inf ? (mk_bounded_below_sequence ? (λi.f (a i))
+ (mk_is_bounded_below ? ? (f (inf ? a))
(ioc_is_lower_bound_f_inf a)))
}.
theorem tail_inf_increasing:
- ∀C.∀O:dedekind_sigma_complete_ordered_set C.
- ∀a:bounded_below_sequence ? O.
- let y ≝ λi.mk_bounded_below_sequence ? ? (λj.a (i+j)) ? in
- let x ≝ λi.inf ? ? (y i) in
- is_increasing ? ? x.
- [ apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? a a));
+ ∀O:dedekind_sigma_complete_ordered_set.
+ ∀a:bounded_below_sequence O.
+ let y ≝ λi.mk_bounded_below_sequence ? (λj.a (i+j)) ? in
+ let x ≝ λi.inf ? (y i) in
+ is_increasing ? x.
+ [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a));
simplify;
intro;
- apply (ib_lower_bound_is_lower_bound ? ? a a)
+ apply (ib_lower_bound_is_lower_bound ? a a)
| intros;
unfold is_increasing;
intro;
- unfold x in ⊢ (? ? ? ? %);
- apply (inf_greatest_lower_bound ? ? ? ? (inf_is_inf ? ? (y (S n))));
- change with (is_lower_bound ? ? (y (S n)) (inf ? ? (y n)));
+ unfold x in ⊢ (? ? ? %);
+ apply (inf_greatest_lower_bound ? ? ? (inf_is_inf ? (y (S n))));
+ change with (is_lower_bound ? (y (S n)) (inf ? (y n)));
unfold is_lower_bound;
intro;
- generalize in match (inf_lower_bound ? ? ? ? (inf_is_inf ? ? (y n)) (S n1));
+ generalize in match (inf_lower_bound ? ? ? (inf_is_inf ? (y n)) (S n1));
(*CSC: coercion per FunClass inserita a mano*)
- suppose (inf ? ? (y n) ≤ bbs_seq ? ? (y n) (S n1)) (H);
- cut (bbs_seq ? ? (y n) (S n1) = bbs_seq ? ? (y (S n)) n1);
+ suppose (inf ? (y n) ≤ bbs_seq ? (y n) (S n1)) (H);
+ cut (bbs_seq ? (y n) (S n1) = bbs_seq ? (y (S n)) n1);
[ rewrite < Hcut;
assumption
| unfold y;
qed.
definition is_liminf:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- bounded_below_sequence ? O → O → Prop.
+ ∀O:dedekind_sigma_complete_ordered_set.
+ bounded_below_sequence O → O → Prop.
intros;
apply
- (is_sup ? ? (λi.inf ? ? (mk_bounded_below_sequence ? ? (λj.b (i+j)) ?)) t);
- apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? b b));
+ (is_sup ? (λi.inf ? (mk_bounded_below_sequence ? (λj.b (i+j)) ?)) t);
+ apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b));
simplify;
intros;
- apply (ib_lower_bound_is_lower_bound ? ? b b).
+ apply (ib_lower_bound_is_lower_bound ? b b).
qed.
definition liminf:
- ∀C:Type.∀O:dedekind_sigma_complete_ordered_set C.
- bounded_sequence ? O → O.
+ ∀O:dedekind_sigma_complete_ordered_set.
+ bounded_sequence O → O.
intros;
apply
- (sup ? ?
- (mk_bounded_above_sequence ? ?
- (λi.inf ? ?
- (mk_bounded_below_sequence ? ?
+ (sup ?
+ (mk_bounded_above_sequence ?
+ (λi.inf ?
+ (mk_bounded_below_sequence ?
(λj.b (i+j)) ?)) ?));
- [ apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? b b));
+ [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? b b));
simplify;
intros;
- apply (ib_lower_bound_is_lower_bound ? ? b b)
- | apply (mk_is_bounded_above ? ? ? (ib_upper_bound ? ? b b));
+ apply (ib_lower_bound_is_lower_bound ? b b)
+ | apply (mk_is_bounded_above ? ? (ib_upper_bound ? b b));
unfold is_upper_bound;
intro;
change with
- (inf C O
- (mk_bounded_below_sequence C O (\lambda j:nat.b (n+j))
- (mk_is_bounded_below C O (\lambda j:nat.b (n+j)) (ib_lower_bound C O b b)
- (\lambda j:nat.ib_lower_bound_is_lower_bound C O b b (n+j))))
-\leq ib_upper_bound C O b b);
- apply (inf_respects_le ? O);
+ (inf O
+ (mk_bounded_below_sequence O (\lambda j:nat.b (n+j))
+ (mk_is_bounded_below O (\lambda j:nat.b (n+j)) (ib_lower_bound O b b)
+ (\lambda j:nat.ib_lower_bound_is_lower_bound O b b (n+j))))
+\leq ib_upper_bound O b b);
+ apply (inf_respects_le O);
simplify;
intro;
- apply (ib_upper_bound_is_upper_bound ? ? b b)
+ apply (ib_upper_bound_is_upper_bound ? b b)
].
qed.
-definition reverse_ordered_set: ∀C.ordered_set C → ordered_set C.
+definition reverse_ordered_set: ordered_set → ordered_set.
intros;
apply mk_ordered_set;
- [ apply mk_pre_ordered_set;
- apply (λx,y:o.y ≤ x)
+ [2:apply (λx,y:o.y ≤ x)
+ | skip
| apply mk_is_order_relation;
[ simplify;
intros;
(cic:/matita/ordered_sets/reverse_ordered_set.con _ _)) a b).
lemma is_lower_bound_reverse_is_upper_bound:
- ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O.
- is_lower_bound ? O a l → is_upper_bound ? (reverse_ordered_set ? O) a l.
+ ∀O:ordered_set.∀a:nat→O.∀l:O.
+ is_lower_bound O a l → is_upper_bound (reverse_ordered_set O) a l.
intros;
unfold;
intro;
qed.
lemma is_upper_bound_reverse_is_lower_bound:
- ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O.
- is_upper_bound ? O a l → is_lower_bound ? (reverse_ordered_set ? O) a l.
+ ∀O:ordered_set.∀a:nat→O.∀l:O.
+ is_upper_bound O a l → is_lower_bound (reverse_ordered_set O) a l.
intros;
unfold;
intro;
qed.
lemma reverse_is_lower_bound_is_upper_bound:
- ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O.
- is_lower_bound ? (reverse_ordered_set ? O) a l → is_upper_bound ? O a l.
+ ∀O:ordered_set.∀a:nat→O.∀l:O.
+ is_lower_bound (reverse_ordered_set O) a l → is_upper_bound O a l.
intros;
unfold in H;
unfold reverse_ordered_set in H;
qed.
lemma reverse_is_upper_bound_is_lower_bound:
- ∀C.∀O:ordered_set C.∀a:nat→O.∀l:O.
- is_upper_bound ? (reverse_ordered_set ? O) a l → is_lower_bound ? O a l.
+ ∀O:ordered_set.∀a:nat→O.∀l:O.
+ is_upper_bound (reverse_ordered_set O) a l → is_lower_bound O a l.
intros;
unfold in H;
unfold reverse_ordered_set in H;
lemma is_inf_to_reverse_is_sup:
- ∀C.∀O:ordered_set C.∀a:bounded_below_sequence ? O.∀l:O.
- is_inf ? O a l → is_sup ? (reverse_ordered_set ? O) a l.
+ ∀O:ordered_set.∀a:bounded_below_sequence O.∀l:O.
+ is_inf O a l → is_sup (reverse_ordered_set O) a l.
intros;
- apply (mk_is_sup C (reverse_ordered_set ? ?));
+ apply (mk_is_sup (reverse_ordered_set O));
[ apply is_lower_bound_reverse_is_upper_bound;
apply inf_lower_bound;
assumption
| intros;
- change in v with (Type_OF_ordered_set ? O);
+ change in v with (os_carrier O);
change with (v ≤ l);
- apply (inf_greatest_lower_bound ? ? ? ? H);
+ apply (inf_greatest_lower_bound ? ? ? H);
apply reverse_is_upper_bound_is_lower_bound;
assumption
].
qed.
lemma is_sup_to_reverse_is_inf:
- ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O.
- is_sup ? O a l → is_inf ? (reverse_ordered_set ? O) a l.
+ ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O.
+ is_sup O a l → is_inf (reverse_ordered_set O) a l.
intros;
- apply (mk_is_inf C (reverse_ordered_set ? ?));
+ apply (mk_is_inf (reverse_ordered_set O));
[ apply is_upper_bound_reverse_is_lower_bound;
apply sup_upper_bound;
assumption
| intros;
- change in v with (Type_OF_ordered_set ? O);
+ change in v with (os_carrier O);
change with (l ≤ v);
- apply (sup_least_upper_bound ? ? ? ? H);
+ apply (sup_least_upper_bound ? ? ? H);
apply reverse_is_lower_bound_is_upper_bound;
assumption
].
qed.
lemma reverse_is_sup_to_is_inf:
- ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O.
- is_sup ? (reverse_ordered_set ? O) a l → is_inf ? O a l.
+ ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O.
+ is_sup (reverse_ordered_set O) a l → is_inf O a l.
intros;
apply mk_is_inf;
[ apply reverse_is_upper_bound_is_lower_bound;
- change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O));
+ change in l with (os_carrier (reverse_ordered_set O));
apply sup_upper_bound;
assumption
| intros;
- change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O));
- change in v with (Type_OF_ordered_set ? (reverse_ordered_set ? O));
- change with (os_le ? (reverse_ordered_set ? O) l v);
- apply (sup_least_upper_bound ? ? ? ? H);
- change in v with (Type_OF_ordered_set ? O);
+ change in l with (os_carrier (reverse_ordered_set O));
+ change in v with (os_carrier (reverse_ordered_set O));
+ change with (os_le (reverse_ordered_set O) l v);
+ apply (sup_least_upper_bound ? ? ? H);
+ change in v with (os_carrier O);
apply is_lower_bound_reverse_is_upper_bound;
assumption
].
qed.
lemma reverse_is_inf_to_is_sup:
- ∀C.∀O:ordered_set C.∀a:bounded_above_sequence ? O.∀l:O.
- is_inf ? (reverse_ordered_set ? O) a l → is_sup ? O a l.
+ ∀O:ordered_set.∀a:bounded_above_sequence O.∀l:O.
+ is_inf (reverse_ordered_set O) a l → is_sup O a l.
intros;
apply mk_is_sup;
[ apply reverse_is_lower_bound_is_upper_bound;
- change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O));
- apply (inf_lower_bound ? ? ? ? H)
+ change in l with (os_carrier (reverse_ordered_set O));
+ apply (inf_lower_bound ? ? ? H)
| intros;
- change in l with (Type_OF_ordered_set ? (reverse_ordered_set ? O));
- change in v with (Type_OF_ordered_set ? (reverse_ordered_set ? O));
- change with (os_le ? (reverse_ordered_set ? O) v l);
- apply (inf_greatest_lower_bound ? ? ? ? H);
- change in v with (Type_OF_ordered_set ? O);
+ change in l with (os_carrier (reverse_ordered_set O));
+ change in v with (os_carrier (reverse_ordered_set O));
+ change with (os_le (reverse_ordered_set O) v l);
+ apply (inf_greatest_lower_bound ? ? ? H);
+ change in v with (os_carrier O);
apply is_upper_bound_reverse_is_lower_bound;
assumption
].
definition reverse_dedekind_sigma_complete_ordered_set:
- ∀C.
- dedekind_sigma_complete_ordered_set C → dedekind_sigma_complete_ordered_set C.
+ dedekind_sigma_complete_ordered_set → dedekind_sigma_complete_ordered_set.
intros;
apply mk_dedekind_sigma_complete_ordered_set;
- [ apply (reverse_ordered_set ? d)
+ [ apply (reverse_ordered_set d)
| elim daemon
(*apply mk_is_dedekind_sigma_complete;
[ intros;
qed.
definition reverse_bounded_sequence:
- ∀C.∀O:dedekind_sigma_complete_ordered_set C.
- bounded_sequence ? O →
- bounded_sequence ? (reverse_dedekind_sigma_complete_ordered_set ? O).
+ ∀O:dedekind_sigma_complete_ordered_set.
+ bounded_sequence O →
+ bounded_sequence (reverse_dedekind_sigma_complete_ordered_set O).
intros;
apply mk_bounded_sequence;
[ apply bs_seq;
qed.
definition limsup ≝
- λC:Type.λO:dedekind_sigma_complete_ordered_set C.
- λa:bounded_sequence ? O.
- liminf ? (reverse_dedekind_sigma_complete_ordered_set ? O)
- (reverse_bounded_sequence ? O a).
+ λO:dedekind_sigma_complete_ordered_set.
+ λa:bounded_sequence O.
+ liminf (reverse_dedekind_sigma_complete_ordered_set O)
+ (reverse_bounded_sequence O a).
notation "hvbox(〈a〉)"
non associative with precedence 45
= (cic:/matita/ordered_sets/bounded_below_sequence.ind#xpointer(1/1/1) _ _ a _).
theorem eq_f_sup_sup_f:
- ∀C.∀O':dedekind_sigma_complete_ordered_set C.
- ∀f:O'→O'. ∀H:is_order_continuous ? ? f.
- ∀a:bounded_above_sequence ? O'.
- ∀p:is_increasing ? ? a.
- f (sup ? ? a) = sup ? ? (mk_bounded_above_sequence ? ? (λi.f (a i)) ?).
- [ apply (mk_is_bounded_above ? ? ? (f (sup ? ? a)));
+ ∀O':dedekind_sigma_complete_ordered_set.
+ ∀f:O'→O'. ∀H:is_order_continuous ? f.
+ ∀a:bounded_above_sequence O'.
+ ∀p:is_increasing ? a.
+ f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) ?).
+ [ apply (mk_is_bounded_above ? ? (f (sup ? a)));
apply ioc_is_upper_bound_f_sup;
assumption
| intros;
qed.
theorem eq_f_sup_sup_f':
- ∀C.∀O':dedekind_sigma_complete_ordered_set C.
- ∀f:O'→O'. ∀H:is_order_continuous ? ? f.
- ∀a:bounded_above_sequence ? O'.
- ∀p:is_increasing ? ? a.
- ∀p':is_bounded_above ? ? (λi.f (a i)).
- f (sup ? ? a) = sup ? ? (mk_bounded_above_sequence ? ? (λi.f (a i)) p').
+ ∀O':dedekind_sigma_complete_ordered_set.
+ ∀f:O'→O'. ∀H:is_order_continuous ? f.
+ ∀a:bounded_above_sequence O'.
+ ∀p:is_increasing ? a.
+ ∀p':is_bounded_above ? (λi.f (a i)).
+ f (sup ? a) = sup ? (mk_bounded_above_sequence ? (λi.f (a i)) p').
intros;
- rewrite > (eq_f_sup_sup_f ? ? f H a H1);
+ rewrite > (eq_f_sup_sup_f ? f H a H1);
apply sup_proof_irrelevant;
reflexivity.
qed.
theorem eq_f_liminf_sup_f_inf:
- ∀C.∀O':dedekind_sigma_complete_ordered_set C.
- ∀f:O'→O'. ∀H:is_order_continuous ? ? f.
- ∀a:bounded_sequence ? O'.
+ ∀O':dedekind_sigma_complete_ordered_set.
+ ∀f:O'→O'. ∀H:is_order_continuous ? f.
+ ∀a:bounded_sequence O'.
let p1 := ? in
- f (liminf ? ? a) =
- sup ? ?
- (mk_bounded_above_sequence ? ?
- (λi.f (inf ? ?
- (mk_bounded_below_sequence ? ?
+ f (liminf ? a) =
+ sup ?
+ (mk_bounded_above_sequence ?
+ (λi.f (inf ?
+ (mk_bounded_below_sequence ?
(λj.a (i+j))
?)))
p1).
- [ apply (mk_is_bounded_below ? ? ? (ib_lower_bound ? ? a a));
+ [ apply (mk_is_bounded_below ? ? (ib_lower_bound ? a a));
simplify;
intro;
- apply (ib_lower_bound_is_lower_bound ? ? a a)
- | apply (mk_is_bounded_above ? ? ? (f (sup ? ? a)));
+ apply (ib_lower_bound_is_lower_bound ? a a)
+ | apply (mk_is_bounded_above ? ? (f (sup ? a)));
unfold is_upper_bound;
intro;
apply (or_transitive ? ? O' ? (f (a n)));
- [ generalize in match (ioc_is_lower_bound_f_inf ? ? ? H);
+ [ generalize in match (ioc_is_lower_bound_f_inf ? ? H);
intro H1;
simplify in H1;
- rewrite > (plus_n_O n) in ⊢ (? ? ? ? (? (? ? ? ? %)));
- apply (H1 (mk_bounded_below_sequence C O' (\lambda j:nat.a (n+j))
-(mk_is_bounded_below C O' (\lambda j:nat.a (n+j)) (ib_lower_bound C O' a a)
- (\lambda j:nat.ib_lower_bound_is_lower_bound C O' a a (n+j)))) O);
+ rewrite > (plus_n_O n) in ⊢ (? ? ? (? (? ? ? %)));
+ apply (H1 (mk_bounded_below_sequence O' (\lambda j:nat.a (n+j))
+(mk_is_bounded_below O' (\lambda j:nat.a (n+j)) (ib_lower_bound O' a a)
+ (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (n+j)))) O);
| elim daemon (*apply (ioc_is_upper_bound_f_sup ? ? ? H)*)
]
| intros;
unfold liminf;
clearbody p1;
generalize in match (\lambda n:nat
-.inf_respects_le C O'
- (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus n j))
- (mk_is_bounded_below C O' (\lambda j:nat.a (plus n j))
- (ib_lower_bound C O' a a)
- (\lambda j:nat.ib_lower_bound_is_lower_bound C O' a a (plus n j))))
- (ib_upper_bound C O' a a)
- (\lambda n1:nat.ib_upper_bound_is_upper_bound C O' a a (plus n n1)));
+.inf_respects_le O'
+ (mk_bounded_below_sequence O' (\lambda j:nat.a (plus n j))
+ (mk_is_bounded_below O' (\lambda j:nat.a (plus n j))
+ (ib_lower_bound O' a a)
+ (\lambda j:nat.ib_lower_bound_is_lower_bound O' a a (plus n j))))
+ (ib_upper_bound O' a a)
+ (\lambda n1:nat.ib_upper_bound_is_upper_bound O' a a (plus n n1)));
intro p2;
- apply (eq_f_sup_sup_f' ? ? f H (mk_bounded_above_sequence C O'
+ apply (eq_f_sup_sup_f' ? f H (mk_bounded_above_sequence O'
(\lambda i:nat
- .inf C O'
- (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus i j))
- (mk_is_bounded_below C O' (\lambda j:nat.a (plus i j))
- (ib_lower_bound C O' a a)
- (\lambda n:nat.ib_lower_bound_is_lower_bound C O' a a (plus i n)))))
-(mk_is_bounded_above C O'
+ .inf O'
+ (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j))
+ (mk_is_bounded_below O' (\lambda j:nat.a (plus i j))
+ (ib_lower_bound O' a a)
+ (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n)))))
+(mk_is_bounded_above O'
(\lambda i:nat
- .inf C O'
- (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus i j))
- (mk_is_bounded_below C O' (\lambda j:nat.a (plus i j))
- (ib_lower_bound C O' a a)
- (\lambda n:nat.ib_lower_bound_is_lower_bound C O' a a (plus i n)))))
- (ib_upper_bound C O' a a) p2)));
+ .inf O'
+ (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j))
+ (mk_is_bounded_below O' (\lambda j:nat.a (plus i j))
+ (ib_lower_bound O' a a)
+ (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n)))))
+ (ib_upper_bound O' a a) p2)));
unfold bas_seq;
change with
- (is_increasing ? ? (\lambda i:nat
-.inf C O'
- (mk_bounded_below_sequence C O' (\lambda j:nat.a (plus i j))
- (mk_is_bounded_below C O' (\lambda j:nat.a (plus i j))
- (ib_lower_bound C O' a a)
- (\lambda n:nat.ib_lower_bound_is_lower_bound C O' a a (plus i n))))));
+ (is_increasing ? (\lambda i:nat
+.inf O'
+ (mk_bounded_below_sequence O' (\lambda j:nat.a (plus i j))
+ (mk_is_bounded_below O' (\lambda j:nat.a (plus i j))
+ (ib_lower_bound O' a a)
+ (\lambda n:nat.ib_lower_bound_is_lower_bound O' a a (plus i n))))));
apply tail_inf_increasing
].
qed.
-definition lt ≝ λC.λO:ordered_set C.λa,b:O.a ≤ b ∧ a ≠ b.
+definition lt ≝ λO:ordered_set.λa,b:O.a ≤ b ∧ a ≠ b.
interpretation "Ordered set lt" 'lt a b =
- (cic:/matita/ordered_sets/lt.con _ _ a b).
\ No newline at end of file
+ (cic:/matita/ordered_sets/lt.con _ _ a b).