--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A||
+ \ / This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ V_____________________________________________________________*)
+
+
+(* ALphabet of the universal machine *)
+
+include "basics/finset.ma".
+
+(*
+include "turing/if_machine.ma".
+include "turing/universal/tests.ma". *)
+
+inductive unialpha : Type[0] ≝
+| bit : bool → unialpha
+| comma : unialpha
+| bar : unialpha
+| grid : unialpha.
+
+definition unialpha_eq ≝
+ λa1,a2.match a1 with
+ [ bit x ⇒ match a2 with [ bit y ⇒ ¬ xorb x y | _ ⇒ false ]
+ | comma ⇒ match a2 with [ comma ⇒ true | _ ⇒ false ]
+ | bar ⇒ match a2 with [ bar ⇒ true | _ ⇒ false ]
+ | grid ⇒ match a2 with [ grid ⇒ true | _ ⇒ false ] ].
+
+definition DeqUnialpha ≝ mk_DeqSet unialpha unialpha_eq ?.
+* [ #x * [ #y cases x cases y normalize % // #Hfalse destruct
+ | *: normalize % #Hfalse destruct ]
+ |*: * [1,5,9,13: #y ] normalize % #H1 destruct % ]
+qed.
+
+axiom unialpha_unique : uniqueb DeqUnialpha [bit true;bit false;comma;bar;grid] = true.
+
+definition FSUnialpha ≝
+ mk_FinSet DeqUnialpha [bit true;bit false;comma;bar;grid] unialpha_unique.
+
+definition is_bit ≝ λc.match c with [ bit _ ⇒ true | _ ⇒ false ].
+
+definition is_grid ≝ λc.match c with [ grid ⇒ true | _ ⇒ false ].
+
+definition is_bar ≝ λc.match c with [ bar ⇒ true | _ ⇒ false ].
+
+definition is_comma ≝ λc.match c with [ comma ⇒ true | _ ⇒ false ].
+
include "turing/while_machine.ma".
include "turing/if_machine.ma".
+include "turing/universal/alphabet.ma".
include "turing/universal/tests.ma".
(* ADVANCE TO MARK (right)
| >reverse_append #Htc @Htc ]
]
qed.
-
-inductive unialpha : Type[0] ≝
-| bit : bool → unialpha
-| comma : unialpha
-| bar : unialpha
-| grid : unialpha.
-
-definition unialpha_eq ≝
- λa1,a2.match a1 with
- [ bit x ⇒ match a2 with [ bit y ⇒ ¬ xorb x y | _ ⇒ false ]
- | comma ⇒ match a2 with [ comma ⇒ true | _ ⇒ false ]
- | bar ⇒ match a2 with [ bar ⇒ true | _ ⇒ false ]
- | grid ⇒ match a2 with [ grid ⇒ true | _ ⇒ false ] ].
-
-definition DeqUnialpha ≝ mk_DeqSet unialpha unialpha_eq ?.
-* [ #x * [ #y cases x cases y normalize % // #Hfalse destruct
- | *: normalize % #Hfalse destruct ]
- |*: * [1,5,9,13: #y ] normalize % #H1 destruct % ]
-qed.
-
-definition FSUnialpha ≝
- mk_FinSet DeqUnialpha [bit true;bit false;comma;bar;grid] ?.
-@daemon
-qed.
(*
MATCH AND ADVANCE(f)
(nop ?)
tc_true.
-definition is_bit ≝ λc.match c with [ bit _ ⇒ true | _ ⇒ false ].
-
definition R_comp_step_true ≝
λt1,t2.
∀l0,c,rs.t1 = midtape (FinProd … FSUnialpha FinBool) l0 c rs →
]]]]]
qed.
-
-(*
-l0 x* a l1 x0* a0 l2 ------> l0 x a* l1 x0 a0* l2
- ^ ^
-
-if current (* x *) = #
- then
- else if x = 0
- then move_right; ----
- adv_to_mark_r;
- if current (* x0 *) = 0
- then advance_mark ----
- adv_to_mark_l;
- advance_mark
- else STOP
- else x = 1 (* analogo *)
-
-*)
-
-
-(*
- MARK NEXT TUPLE machine
- (partially axiomatized)
-
- marks the first character after the first bar (rightwards)
- *)
-
-axiom myalpha : FinSet.
-axiom is_bar : FinProd … myalpha FinBool → bool.
-axiom is_grid : FinProd … myalpha FinBool → bool.
-definition bar_or_grid ≝ λc.is_bar c ∨ is_grid c.
-axiom bar : FinProd … myalpha FinBool.
-axiom grid : FinProd … myalpha FinBool.
-
-definition mark_next_tuple ≝
- seq ? (adv_to_mark_r ? bar_or_grid)
- (ifTM ? (test_char ? is_bar)
- (move_r_and_mark ?) (nop ?) 1).
-
-definition R_mark_next_tuple ≝
- λt1,t2.
- ∀ls,c,rs1,rs2.
- (* c non può essere un separatore ... speriamo *)
- t1 = midtape ? ls c (rs1@grid::rs2) →
- memb ? grid rs1 = false → bar_or_grid c = false →
- (∃rs3,rs4,d,b.rs1 = rs3 @ bar :: rs4 ∧
- memb ? bar rs3 = false ∧
- Some ? 〈d,b〉 = option_hd ? (rs4@grid::rs2) ∧
- t2 = midtape ? (bar::reverse ? rs3@c::ls) 〈d,true〉 (tail ? (rs4@grid::rs2)))
- ∨
- (memb ? bar rs1 = false ∧
- t2 = midtape ? (reverse ? rs1@c::ls) grid rs2).
-
-axiom tech_split :
- ∀A:DeqSet.∀f,l.
- (∀x.memb A x l = true → f x = false) ∨
- (∃l1,c,l2.f c = true ∧ l = l1@c::l2 ∧ ∀x.memb ? x l1 = true → f c = false).
-(*#A #f #l elim l
-[ % #x normalize #Hfalse *)
-
-theorem sem_mark_next_tuple :
- Realize ? mark_next_tuple R_mark_next_tuple.
-#intape
-lapply (sem_seq ? (adv_to_mark_r ? bar_or_grid)
- (ifTM ? (test_char ? is_bar) (mark ?) (nop ?) 1) ????)
-[@sem_if //
-| //
-|||#Hif cases (Hif intape) -Hif
- #j * #outc * #Hloop * #ta * #Hleft #Hright
- @(ex_intro ?? j) @ex_intro [|% [@Hloop] ]
- -Hloop
- #ls #c #rs1 #rs2 #Hrs #Hrs1 #Hc
- cases (Hleft … Hrs)
- [ * #Hfalse >Hfalse in Hc; #Htf destruct (Htf)
- | * #_ #Hta cases (tech_split ? is_bar rs1)
- [ #H1 lapply (Hta rs1 grid rs2 (refl ??) ? ?)
- [ (* Hrs1, H1 *) @daemon
- | (* bar_or_grid grid = true *) @daemon
- | -Hta #Hta cases Hright
- [ * #tb * whd in ⊢ (%→?); #Hcurrent
- @False_ind cases(Hcurrent grid ?)
- [ #Hfalse (* grid is not a bar *) @daemon
- | >Hta % ]
- | * #tb * whd in ⊢ (%→?); #Hcurrent
- cases (Hcurrent grid ?)
- [ #_ #Htb whd in ⊢ (%→?); #Houtc
- %2 %
- [ (* H1 *) @daemon
- | >Houtc >Htb >Hta % ]
- | >Hta % ]
- ]
- ]
- | * #rs3 * #c0 * #rs4 * * #Hc0 #Hsplit #Hrs3
- % @(ex_intro ?? rs3) @(ex_intro ?? rs4)
- lapply (Hta rs3 c0 (rs4@grid::rs2) ???)
- [ #x #Hrs3' (* Hrs1, Hrs3, Hsplit *) @daemon
- | (* bar → bar_or_grid *) @daemon
- | >Hsplit >associative_append % ] -Hta #Hta
- cases Hright
- [ * #tb * whd in ⊢ (%→?); #Hta'
- whd in ⊢ (%→?); #Htb
- cases (Hta' c0 ?)
- [ #_ #Htb' >Htb' in Htb; #Htb
- generalize in match Hsplit; -Hsplit
- cases rs4 in Hta;
- [ >(eq_pair_fst_snd … grid)
- #Hta #Hsplit >(Htb … Hta)
- >(?:c0 = bar)
- [ @(ex_intro ?? (\fst grid)) @(ex_intro ?? (\snd grid))
- % [ % [ % [ (* Hsplit *) @daemon |(*Hrs3*) @daemon ] | % ] | % ]
- | (* Hc0 *) @daemon ]
- | #r5 #rs5 >(eq_pair_fst_snd … r5)
- #Hta #Hsplit >(Htb … Hta)
- >(?:c0 = bar)
- [ @(ex_intro ?? (\fst r5)) @(ex_intro ?? (\snd r5))
- % [ % [ % [ (* Hc0, Hsplit *) @daemon | (*Hrs3*) @daemon ] | % ]
- | % ] | (* Hc0 *) @daemon ] ] | >Hta % ]
- | * #tb * whd in ⊢ (%→?); #Hta'
- whd in ⊢ (%→?); #Htb
- cases (Hta' c0 ?)
- [ #Hfalse @False_ind >Hfalse in Hc0;
- #Hc0 destruct (Hc0)
- | >Hta % ]
-]]]]
-qed.
\ No newline at end of file
--- /dev/null
+(*
+ ||M|| This file is part of HELM, an Hypertextual, Electronic
+ ||A|| Library of Mathematics, developed at the Computer Science
+ ||T|| Department of the University of Bologna, Italy.
+ ||I||
+ ||T||
+ ||A||
+ \ / This file is distributed under the terms of the
+ \ / GNU General Public License Version 2
+ V_____________________________________________________________*)
+
+
+(* COMPARE BIT
+
+*)
+
+include "turing/universal/marks.ma".
+
+definition STape ≝ FinProd … FSUnialpha FinBool.
+
+definition only_bits ≝ λl.
+ ∀c.memb STape c l = true → is_bit (\fst c) = true.
+
+(*
+l0 x* a l1 x0* a0 l2 ------> l0 x a* l1 x0 a0* l2
+ ^ ^
+
+if current (* x *) = #
+ then
+ else if x = 0
+ then move_right; ----
+ adv_to_mark_r;
+ if current (* x0 *) = 0
+ then advance_mark ----
+ adv_to_mark_l;
+ advance_mark
+ else STOP
+ else x = 1 (* analogo *)
+
+*)
+
+
+(*
+ MARK NEXT TUPLE machine
+ (partially axiomatized)
+
+ marks the first character after the first bar (rightwards)
+ *)
+
+check unialpha
+
+axiom is_bar : FinProd … myalpha FinBool → bool.
+axiom is_grid : FinProd … myalpha FinBool → bool.
+definition bar_or_grid ≝ λc.is_bar c ∨ is_grid c.
+axiom bar : FinProd … myalpha FinBool.
+axiom grid : FinProd … myalpha FinBool.
+
+definition mark_next_tuple ≝
+ seq ? (adv_to_mark_r ? bar_or_grid)
+ (ifTM ? (test_char ? is_bar)
+ (move_r_and_mark ?) (nop ?) 1).
+
+definition R_mark_next_tuple ≝
+ λt1,t2.
+ ∀ls,c,rs1,rs2.
+ (* c non può essere un separatore ... speriamo *)
+ t1 = midtape ? ls c (rs1@grid::rs2) →
+ memb ? grid rs1 = false → bar_or_grid c = false →
+ (∃rs3,rs4,d,b.rs1 = rs3 @ bar :: rs4 ∧
+ memb ? bar rs3 = false ∧
+ Some ? 〈d,b〉 = option_hd ? (rs4@grid::rs2) ∧
+ t2 = midtape ? (bar::reverse ? rs3@c::ls) 〈d,true〉 (tail ? (rs4@grid::rs2)))
+ ∨
+ (memb ? bar rs1 = false ∧
+ t2 = midtape ? (reverse ? rs1@c::ls) grid rs2).
+
+axiom tech_split :
+ ∀A:DeqSet.∀f,l.
+ (∀x.memb A x l = true → f x = false) ∨
+ (∃l1,c,l2.f c = true ∧ l = l1@c::l2 ∧ ∀x.memb ? x l1 = true → f c = false).
+(*#A #f #l elim l
+[ % #x normalize #Hfalse *)
+
+theorem sem_mark_next_tuple :
+ Realize ? mark_next_tuple R_mark_next_tuple.
+#intape
+lapply (sem_seq ? (adv_to_mark_r ? bar_or_grid)
+ (ifTM ? (test_char ? is_bar) (mark ?) (nop ?) 1) ????)
+[@sem_if //
+| //
+|||#Hif cases (Hif intape) -Hif
+ #j * #outc * #Hloop * #ta * #Hleft #Hright
+ @(ex_intro ?? j) @ex_intro [|% [@Hloop] ]
+ -Hloop
+ #ls #c #rs1 #rs2 #Hrs #Hrs1 #Hc
+ cases (Hleft … Hrs)
+ [ * #Hfalse >Hfalse in Hc; #Htf destruct (Htf)
+ | * #_ #Hta cases (tech_split ? is_bar rs1)
+ [ #H1 lapply (Hta rs1 grid rs2 (refl ??) ? ?)
+ [ (* Hrs1, H1 *) @daemon
+ | (* bar_or_grid grid = true *) @daemon
+ | -Hta #Hta cases Hright
+ [ * #tb * whd in ⊢ (%→?); #Hcurrent
+ @False_ind cases(Hcurrent grid ?)
+ [ #Hfalse (* grid is not a bar *) @daemon
+ | >Hta % ]
+ | * #tb * whd in ⊢ (%→?); #Hcurrent
+ cases (Hcurrent grid ?)
+ [ #_ #Htb whd in ⊢ (%→?); #Houtc
+ %2 %
+ [ (* H1 *) @daemon
+ | >Houtc >Htb >Hta % ]
+ | >Hta % ]
+ ]
+ ]
+ | * #rs3 * #c0 * #rs4 * * #Hc0 #Hsplit #Hrs3
+ % @(ex_intro ?? rs3) @(ex_intro ?? rs4)
+ lapply (Hta rs3 c0 (rs4@grid::rs2) ???)
+ [ #x #Hrs3' (* Hrs1, Hrs3, Hsplit *) @daemon
+ | (* bar → bar_or_grid *) @daemon
+ | >Hsplit >associative_append % ] -Hta #Hta
+ cases Hright
+ [ * #tb * whd in ⊢ (%→?); #Hta'
+ whd in ⊢ (%→?); #Htb
+ cases (Hta' c0 ?)
+ [ #_ #Htb' >Htb' in Htb; #Htb
+ generalize in match Hsplit; -Hsplit
+ cases rs4 in Hta;
+ [ >(eq_pair_fst_snd … grid)
+ #Hta #Hsplit >(Htb … Hta)
+ >(?:c0 = bar)
+ [ @(ex_intro ?? (\fst grid)) @(ex_intro ?? (\snd grid))
+ % [ % [ % [ (* Hsplit *) @daemon |(*Hrs3*) @daemon ] | % ] | % ]
+ | (* Hc0 *) @daemon ]
+ | #r5 #rs5 >(eq_pair_fst_snd … r5)
+ #Hta #Hsplit >(Htb … Hta)
+ >(?:c0 = bar)
+ [ @(ex_intro ?? (\fst r5)) @(ex_intro ?? (\snd r5))
+ % [ % [ % [ (* Hc0, Hsplit *) @daemon | (*Hrs3*) @daemon ] | % ]
+ | % ] | (* Hc0 *) @daemon ] ] | >Hta % ]
+ | * #tb * whd in ⊢ (%→?); #Hta'
+ whd in ⊢ (%→?); #Htb
+ cases (Hta' c0 ?)
+ [ #Hfalse @False_ind >Hfalse in Hc0;
+ #Hc0 destruct (Hc0)
+ | >Hta % ]
+]]]]
+qed.
\ No newline at end of file