type id = string (* the abstract type of the (annotated) node identifiers *)
type 'term explicit_named_substitution = (UriManager.uri * 'term) list
-type implicit_annotation = [ `Closed | `Type ]
+type implicit_annotation = [ `Closed | `Type | `Hole ]
type anntarget =
Object of annobj (* if annobj is a Constant, this is its type *)
Name of string
| Anonymous
and term =
- Rel of int (* DeBrujin index *)
+ Rel of int (* DeBrujin index, 1 based*)
| Var of UriManager.uri * (* uri, *)
term explicit_named_substitution (* explicit named subst. *)
| Meta of int * (term option) list (* numeric id, *)
| CurrentProof of string * metasenv * (* name, conjectures, *)
term * term * UriManager.uri list (* value, type, parameters *)
| InductiveDefinition of inductiveType list * (* inductive types, *)
- UriManager.uri list * int (* parameters, n ind. pars *)
+ UriManager.uri list * int (* params, left params no *)
and inductiveType =
string * bool * term * (* typename, inductive, arity *)
constructor list (* constructors *)
| Failure _
| Not_found -> raise (UriManager.IllFormedUri s)
+let select ~term ~context =
+ let rec aux context term =
+ match (context, term) with
+ | Cic.Implicit (Some `Hole), t -> [t]
+ | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) ->
+ List.concat
+ (List.map2
+ (fun t1 t2 ->
+ (match (t1, t2) with Some t1, Some t2 -> aux t1 t2 | _ -> []))
+ ctxt1 ctxt2)
+ | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> aux te1 te2 @ aux ty1 ty2
+ | Cic.Prod (_, s1, t1), Cic.Prod (_, s2, t2)
+ | Cic.Lambda (_, s1, t1), Cic.Lambda (_, s2, t2)
+ | Cic.LetIn (_, s1, t1), Cic.LetIn (_, s2, t2) -> aux s1 s2 @ aux t1 t2
+ | Cic.Appl terms1, Cic.Appl terms2 -> auxs terms1 terms2
+ | Cic.Var (_, subst1), Cic.Var (_, subst2)
+ | Cic.Const (_, subst1), Cic.Const (_, subst2)
+ | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2)
+ | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) ->
+ auxs (List.map snd subst1) (List.map snd subst2)
+ | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) ->
+ aux out1 out2 @ aux t1 t2 @ auxs pat1 pat2
+ | Cic.Fix (_, funs1), Cic.Fix (_, funs2) ->
+ List.concat
+ (List.map2
+ (fun (_, _, ty1, bo1) (_, _, ty2, bo2) -> aux ty1 ty2 @ aux bo1 bo2)
+ funs1 funs2)
+ | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) ->
+ List.concat
+ (List.map2
+ (fun (_, ty1, bo1) (_, ty2, bo2) -> aux ty1 ty2 @ aux bo1 bo2)
+ funs1 funs2)
+ | _ -> assert false
+ and auxs terms1 terms2 = (* as aux for list of terms *)
+ List.concat (List.map2 aux terms1 terms2)
+ in
+ aux context term
+
+let context_of ?(equality=(==)) ~term terms =
+ let (===) x y = equality x y in
+ let rec aux t =
+ match t with
+ | t when List.exists (fun t' -> t === t') terms -> Cic.Implicit (Some `Hole)
+ | Cic.Var (uri, subst) -> Cic.Var (uri, aux_subst subst)
+ | Cic.Meta (i, ctxt) ->
+ let ctxt =
+ List.map (function None -> None | Some t -> Some (aux t)) ctxt
+ in
+ Cic.Meta (i, ctxt)
+ | Cic.Cast (t, ty) -> Cic.Cast (aux t, aux ty)
+ | Cic.Prod (name, s, t) -> Cic.Prod (name, aux s, aux t)
+ | Cic.Lambda (name, s, t) -> Cic.Lambda (name, aux s, aux t)
+ | Cic.LetIn (name, s, t) -> Cic.LetIn (name, aux s, aux t)
+ | Cic.Appl terms -> Cic.Appl (List.map aux terms)
+ | Cic.Const (uri, subst) -> Cic.Const (uri, aux_subst subst)
+ | Cic.MutInd (uri, tyno, subst) -> Cic.MutInd (uri, tyno, aux_subst subst)
+ | Cic.MutConstruct (uri, tyno, consno, subst) ->
+ Cic.MutConstruct (uri, tyno, consno, aux_subst subst)
+ | Cic.MutCase (uri, tyno, outty, t, pat) ->
+ Cic.MutCase (uri, tyno, aux outty, aux t, List.map aux pat)
+ | Cic.Fix (funno, funs) ->
+ let funs =
+ List.map (fun (name, i, ty, bo) -> (name, i, aux ty, aux bo)) funs
+ in
+ Cic.Fix (funno, funs)
+ | Cic.CoFix (funno, funs) ->
+ let funs =
+ List.map (fun (name, ty, bo) -> (name, aux ty, aux bo)) funs
+ in
+ Cic.CoFix (funno, funs)
+ | Cic.Rel _
+ | Cic.Sort _
+ | Cic.Implicit _ -> t
+ and aux_subst subst =
+ List.map (fun (uri, t) -> (uri, aux t)) subst
+ in
+ aux term
+
+let pack terms =
+ List.fold_right
+ (fun term acc -> Cic.Prod (Cic.Anonymous, term, acc))
+ terms (Cic.Sort (Cic.Type (CicUniv.fresh ())))
+
+let rec unpack = function
+ | Cic.Prod (Cic.Anonymous, term, Cic.Sort (Cic.Type _)) -> [term]
+ | Cic.Prod (Cic.Anonymous, term, tgt) -> term :: unpack tgt
+ | _ -> assert false
+
+let rec strip_prods n = function
+ | t when n = 0 -> t
+ | Cic.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt
+ | _ -> failwith "not enough prods"
+