+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/BEq/defs".
-
-include "logic/equality.ma".
-
-include "BNot/BNot.ma".
-
-inductive BEq (b1:Bool): Bool \to Bool \to Prop \def
- | beq_false: \forall b2. BNot b1 b2 \to BEq b1 false b2
- | beq_true : BEq b1 true b1
-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/BNot/defs".
-
-include "Bool/Bool.ma".
-
-inductive BNot: Bool \to Bool \to Prop \def
- | bnot_false: BNot false true
- | bnot_true : BNot true false
-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/Bool/defs".
-
-inductive Bool: Set \def
- | false: Bool
- | true: Bool
-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/NLE/defs".
-
-include "Nat/Nat.ma".
-
-inductive NLE: Nat \to Nat \to Prop \def
- | NLE_zero: \forall q. NLE zero q
- | NLE_succ: \forall p,q. NLE p q \to NLE (succ p) (succ q).
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/NPlus/defs".
-
-include "logic/equality.ma".
-
-include "Nat/Nat.ma".
-
-inductive NPlus (p:Nat): Nat \to Nat \to Prop \def
- | nplus_zero_2: NPlus p zero p
- | nplus_succ_2: \forall q, r. NPlus p q r \to NPlus p (succ q) (succ r).
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/NPlus/fwd".
-
-include "Nat/Nat_fwd.ma".
-include "NPlus/NPlus.ma".
-
-(* primitive generation lemmas proved by elimination and inversion *)
-
-theorem nplus_gen_zero_1: \forall q,r. NPlus zero q r \to q = r.
- intros. elim H; clear H q r; intros;
- [ reflexivity
- | clear H1. auto
- ].
-qed.
-
-theorem nplus_gen_succ_1: \forall p,q,r. NPlus (succ p) q r \to
- \exists s. r = (succ s) \land NPlus p q s.
- intros. elim H; clear H q r; intros;
- [
- | clear H1.
- decompose.
- rewrite > H1. clear H1 n2
- ]; apply ex_intro; [| auto || auto ]. (**)
-qed.
-
-theorem nplus_gen_zero_2: \forall p,r. NPlus p zero r \to p = r.
- intros. inversion H; clear H; intros;
- [ auto
- | clear H H1.
- lapply eq_gen_zero_succ to H2 as H0. apply H0
- ].
-qed.
-
-theorem nplus_gen_succ_2: \forall p,q,r. NPlus p (succ q) r \to
- \exists s. r = (succ s) \land NPlus p q s.
- intros. inversion H; clear H; intros;
- [ lapply eq_gen_succ_zero to H as H0. apply H0
- | clear H1 H3 r.
- lapply linear eq_gen_succ_succ to H2 as H0.
- rewrite > H0. clear H0 q.
- apply ex_intro; [| auto ] (**)
- ].
-qed.
-
-theorem nplus_gen_zero_3: \forall p,q. NPlus p q zero \to p = zero \land q = zero.
- intros. inversion H; clear H; intros;
- [ rewrite < H1. clear H1 p.
- auto
- | clear H H1.
- lapply eq_gen_zero_succ to H3 as H0. apply H0
- ].
-qed.
-
-theorem nplus_gen_succ_3: \forall p,q,r. NPlus p q (succ r) \to
- \exists s. p = succ s \land NPlus s q r \lor
- q = succ s \land NPlus p s r.
- intros. inversion H; clear H; intros;
- [ rewrite < H1. clear H1 p
- | clear H1.
- lapply linear eq_gen_succ_succ to H3 as H0.
- rewrite > H0. clear H0 r.
- ]; apply ex_intro; [| auto || auto ] (**)
-qed.
-(*
-(* alternative proofs invoking nplus_gen_2 *)
-
-variant nplus_gen_zero_3_alt: \forall p,q. NPlus p q zero \to p = zero \land q = zero.
- intros 2. elim q; clear q; intros;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p.
- auto
- | clear H.
- lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- lapply linear eq_gen_zero_succ to H1 as H0. apply H0
- ].
-qed.
-
-variant nplus_gen_succ_3_alt: \forall p,q,r. NPlus p q (succ r) \to
- \exists s. p = succ s \land NPlus s q r \lor
- q = succ s \land NPlus p s r.
- intros 2. elim q; clear q; intros;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p
- | clear H.
- lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- lapply linear eq_gen_succ_succ to H1 as H0.
- rewrite > H0. clear H0 r.
- ]; apply ex_intro; [| auto || auto ]. (**)
-qed.
-*)
-(* other simplification lemmas *)
-
-theorem nplus_gen_eq_2_3: \forall p,q. NPlus p q q \to p = zero.
- intros 2. elim q; clear q; intros;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p
- | lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- lapply linear eq_gen_succ_succ to H2 as H0.
- rewrite < H0 in H3. clear H0 a
- ]; auto.
-qed.
-
-theorem nplus_gen_eq_1_3: \forall p,q. NPlus p q p \to q = zero.
- intros 1. elim p; clear p; intros;
- [ lapply linear nplus_gen_zero_1 to H as H0.
- rewrite > H0. clear H0 q
- | lapply linear nplus_gen_succ_1 to H1 as H0.
- decompose.
- lapply linear eq_gen_succ_succ to H2 as H0.
- rewrite < H0 in H3. clear H0 a
- ]; auto.
-qed.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/NPlus/props".
-
-include "NPlus/NPlus_fwd.ma".
-
-theorem nplus_zero_1: \forall q. NPlus zero q q.
- intros. elim q; clear q; auto.
-qed.
-
-theorem nplus_succ_1: \forall p,q,r. NPlus p q r \to NPlus (succ p) q (succ r).
- intros 2. elim q; clear q;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p
- | lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- rewrite > H2. clear H2 r
- ]; auto.
-qed.
-
-theorem nplus_sym: \forall p,q,r. NPlus p q r \to NPlus q p r.
- intros 2. elim q; clear q;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p
- | lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- rewrite > H2. clear H2 r
- ]; auto.
-qed.
-
-theorem nplus_shift_succ_sx: \forall p,q,r.
- NPlus p (succ q) r \to NPlus (succ p) q r.
- intros.
- lapply linear nplus_gen_succ_2 to H as H0.
- decompose.
- rewrite > H1. clear H1 r.
- auto.
-qed.
-
-theorem nplus_shift_succ_dx: \forall p,q,r.
- NPlus (succ p) q r \to NPlus p (succ q) r.
- intros.
- lapply linear nplus_gen_succ_1 to H as H0.
- decompose.
- rewrite > H1. clear H1 r.
- auto.
-qed.
-
-theorem nplus_trans_1: \forall p,q1,r1. NPlus p q1 r1 \to
- \forall q2,r2. NPlus r1 q2 r2 \to
- \exists q. NPlus q1 q2 q \land NPlus p q r2.
- intros 2; elim q1; clear q1; intros;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p
- | lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- rewrite > H3. rewrite > H3 in H2. clear H3 r1.
- lapply linear nplus_gen_succ_1 to H2 as H0.
- decompose.
- rewrite > H2. clear H2 r2.
- lapply linear H to H4, H3 as H0.
- decompose.
- ]; apply ex_intro; [| auto || auto ]. (**)
-qed.
-
-theorem nplus_trans_2: \forall p1,q,r1. NPlus p1 q r1 \to
- \forall p2,r2. NPlus p2 r1 r2 \to
- \exists p. NPlus p1 p2 p \land NPlus p q r2.
- intros 2; elim q; clear q; intros;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0. clear H0 p1
- | lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- rewrite > H3. rewrite > H3 in H2. clear H3 r1.
- lapply linear nplus_gen_succ_2 to H2 as H0.
- decompose.
- rewrite > H2. clear H2 r2.
- lapply linear H to H4, H3 as H0.
- decompose.
- ]; apply ex_intro; [| auto || auto ]. (**)
-qed.
-
-theorem nplus_conf: \forall p,q,r1. NPlus p q r1 \to
- \forall r2. NPlus p q r2 \to r1 = r2.
- intros 2. elim q; clear q; intros;
- [ lapply linear nplus_gen_zero_2 to H as H0.
- rewrite > H0 in H1. clear H0 p
- | lapply linear nplus_gen_succ_2 to H1 as H0.
- decompose.
- rewrite > H3. clear H3 r1.
- lapply linear nplus_gen_succ_2 to H2 as H0.
- decompose.
- rewrite > H2. clear H2 r2.
- ]; auto.
-qed.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/Nat/defs".
-
-inductive Nat: Set \def
- | zero: Nat
- | succ: Nat \to Nat
-.
+++ /dev/null
-(**************************************************************************)
-(* ___ *)
-(* ||M|| *)
-(* ||A|| A project by Andrea Asperti *)
-(* ||T|| *)
-(* ||I|| Developers: *)
-(* ||T|| The HELM team. *)
-(* ||A|| http://helm.cs.unibo.it *)
-(* \ / *)
-(* \ / This file is distributed under the terms of the *)
-(* v GNU General Public License Version 2 *)
-(* *)
-(**************************************************************************)
-
-set "baseuri" "cic:/matita/RELATIONAL/Nat/fwd".
-
-include "logic/equality.ma".
-
-include "Nat/Nat.ma".
-
-theorem eq_gen_zero_succ: \forall (P:Prop). \forall m2. zero = succ m2 \to P.
- intros. discriminate H.
-qed.
-
-theorem eq_gen_succ_zero: \forall (P:Prop). \forall m1. succ m1 = zero \to P.
- intros. discriminate H.
-qed.
-
-theorem eq_gen_succ_succ: \forall m1,m2. succ m1 = succ m2 \to m1 = m2.
- intros. injection H. assumption.
-qed.
+++ /dev/null
-H=@
-
-RT_BASEDIR=/home/fguidi/svn/software/matita/
-OPTIONS=-bench
-MMAKE=$(RT_BASEDIR)matitamake $(OPTIONS)
-CLEAN=$(RT_BASEDIR)matitaclean $(OPTIONS)
-MMAKEO=$(RT_BASEDIR)matitamake.opt $(OPTIONS)
-CLEANO=$(RT_BASEDIR)matitaclean.opt $(OPTIONS)
-
-devel:=$(shell basename `pwd`)
-
-all: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) build $(devel)
-clean: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) clean $(devel)
-cleanall: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MCLEAN) all
-
-all.opt opt: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) build $(devel)
-clean.opt: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) clean $(devel)
-cleanall.opt: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MCLEANO) all
-
-%.mo: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) $@
-%.mo.opt: preall
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKEO) $@
-
-preall:
- $(H)MATITA_FLAGS=$(MATITA_FLAGS) $(MMAKE) init $(devel)
-