--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+include "basic_2/syntax/tdeq.ma".
+include "basic_2/relocation/lifts.ma".
+
+(* GENERIC RELOCATION FOR TERMS *********************************************)
+
+(* Properties with degree-based equivalence for terms ***********************)
+
+lemma tdeq_lifts: ∀h,o. liftable2 (tdeq h o).
+#h #o #T1 #T2 #H elim H -T1 -T2 [||| * ]
+[ #s1 #s2 #d #Hs1 #Hs2 #f #X #H >(lifts_inv_sort1 … H) -H
+ /3 width=5 by lifts_sort, tdeq_sort, ex2_intro/
+| #i #f #X #H elim (lifts_inv_lref1 … H) -H
+ /3 width=3 by lifts_lref, tdeq_lref, ex2_intro/
+| #l #f #X #H >(lifts_inv_gref1 … H) -H
+ /2 width=3 by lifts_gref, tdeq_gref, ex2_intro/
+| #p #I #V1 #V2 #T1 #T2 #_ #_ #IHV #IHT #f #X #H elim (lifts_inv_bind1 … H) -H
+ #W1 #U1 #HVW1 #HTU1 #H destruct
+ elim (IHV … HVW1) -V1 elim (IHT … HTU1) -T1
+ /3 width=5 by lifts_bind, tdeq_pair, ex2_intro/
+| #I #V1 #V2 #T1 #T2 #_ #_ #IHV #IHT #f #X #H elim (lifts_inv_flat1 … H) -H
+ #W1 #U1 #HVW1 #HTU1 #H destruct
+ elim (IHV … HVW1) -V1 elim (IHT … HTU1) -T1
+ /3 width=5 by lifts_flat, tdeq_pair, ex2_intro/
+]
+qed-.
+
+(* Inversion lemmas with degree-based equivalence for terms *****************)
+
+lemma tdeq_inv_lifts: ∀h,o. deliftable2_sn (tdeq h o).
+#h #o #U1 #U2 #H elim H -U1 -U2 [||| * ]
+[ #s1 #s2 #d #Hs1 #Hs2 #f #X #H >(lifts_inv_sort2 … H) -H
+ /3 width=5 by lifts_sort, tdeq_sort, ex2_intro/
+| #i #f #X #H elim (lifts_inv_lref2 … H) -H
+ /3 width=3 by lifts_lref, tdeq_lref, ex2_intro/
+| #l #f #X #H >(lifts_inv_gref2 … H) -H
+ /2 width=3 by lifts_gref, tdeq_gref, ex2_intro/
+| #p #I #W1 #W2 #U1 #U2 #_ #_ #IHW #IHU #f #X #H elim (lifts_inv_bind2 … H) -H
+ #V1 #T1 #HVW1 #HTU1 #H destruct
+ elim (IHW … HVW1) -W1 elim (IHU … HTU1) -U1
+ /3 width=5 by lifts_bind, tdeq_pair, ex2_intro/
+| #I #W1 #W2 #U1 #U2 #_ #_ #IHW #IHU #f #X #H elim (lifts_inv_flat2 … H) -H
+ #V1 #T1 #HVW1 #HTU1 #H destruct
+ elim (IHW … HVW1) -W1 elim (IHU … HTU1) -U1
+ /3 width=5 by lifts_flat, tdeq_pair, ex2_intro/
+]
+qed-.
(* UNCOUNTED CONTEXT-SENSITIVE PARALLEL RT-TRANSITION FOR TERMS *************)
+include "basic_2/relocation/lifts_tdeq.ma".
include "basic_2/s_computation/fqus_fqup.ma".
include "basic_2/rt_transition/cpx_drops.ma".
| * #H1 #H2 #H3 destruct /2 width=3 by ex2_intro/
]
qed-.
-(*
-lemma fqu_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
+
+lemma fqu_cpx_trans_ntdeq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h] U2 → (T2 ≡[h, o] U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h] U1 & T1 ≡[h, o] U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐ ⦃G2, L2, U2⦄.
#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
-[ #I #G #L #V1 #V2 #HV12 #_ elim (lift_total V2 0 1)
+[ #I #G #L #V1 #V2 #HV12 #_ elim (lifts_total V2 𝐔❴1❵)
#U2 #HVU2 @(ex3_intro … U2)
- [1,3: /3 width=7 by fqu_drop, cpx_delta, drop_pair, drop_drop/
- | #H destruct
- lapply (lift_inv_lref2_be … HVU2 ? ?) -HVU2 //
+ [1,3: /3 width=7 by cpx_delta, fqu_drop/
+ | #H lapply (tdeq_inv_lref1 … H) -H
+ #H destruct /2 width=5 by lifts_inv_lref2_uni_lt/
]
-| #I #G #L #V1 #T #V2 #HV12 #H @(ex3_intro … (②{I}V2.T))
+| #I #G #L #V1 #T #V2 #HV12 #H0 @(ex3_intro … (②{I}V2.T))
[1,3: /2 width=4 by fqu_pair_sn, cpx_pair_sn/
- | #H0 destruct /2 width=1 by/
+ | #H elim (tdeq_inv_pair … H) -H /2 width=1 by/
]
-| #a #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓑ{a,I}V.T2))
+| #p #I #G #L #V #T1 #T2 #HT12 #H0 @(ex3_intro … (ⓑ{p,I}V.T2))
[1,3: /2 width=4 by fqu_bind_dx, cpx_bind/
- | #H0 destruct /2 width=1 by/
+ | #H elim (tdeq_inv_pair … H) -H /2 width=1 by/
]
-| #I #G #L #V #T1 #T2 #HT12 #H @(ex3_intro … (ⓕ{I}V.T2))
+| #I #G #L #V #T1 #T2 #HT12 #H0 @(ex3_intro … (ⓕ{I}V.T2))
[1,3: /2 width=4 by fqu_flat_dx, cpx_flat/
- | #H0 destruct /2 width=1 by/
+ | #H elim (tdeq_inv_pair … H) -H /2 width=1 by/
+ ]
+| #I #G #L #V #T1 #U1 #HTU1 #T2 #HT12 #H0
+ elim (cpx_lifts … HT12 (Ⓣ) … (L.ⓑ{I}V) … HTU1) -HT12 /3 width=1 by drops_refl, drops_drop/
+ #U2 #HTU2 #HU12 @(ex3_intro … U2)
+ [1,3: /3 width=1 by fqu_drop/
+ | #H elim (tdeq_inv_lifts … H … HTU1) -U1
+ #X2 #H <(lifts_inj … HTU2 … H) -U2 /2 width=1 by/
]
-| #G #L #K #T1 #U1 #k #HLK #HTU1 #T2 #HT12 #H elim (lift_total T2 0 (k+1))
- #U2 #HTU2 @(ex3_intro … U2)
- [1,3: /2 width=10 by cpx_lift, fqu_drop/
- | #H0 destruct /3 width=5 by lift_inj/
]
qed-.
-lemma fquq_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fquq_inv_gen … H12) -H12
-[ #H12 elim (fqu_cpx_trans_neq … H12 … HTU2 H) -T2
+lemma fquq_cpx_trans_ntdeq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐⸮ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h] U2 → (T2 ≡[h, o] U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h] U1 & T1 ≡[h, o] U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐⸮ ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 elim H12 -H12
+[ #H12 #U2 #HTU2 #H elim (fqu_cpx_trans_ntdeq … H12 … HTU2 H) -T2
/3 width=4 by fqu_fquq, ex3_intro/
| * #HG #HL #HT destruct /3 width=4 by ex3_intro/
]
qed-.
-lemma fqup_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐+ ⦃G2, L2, U2⦄.
+lemma fqup_cpx_trans_ntdeq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐+ ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h] U2 → (T2 ≡[h, o] U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h] U1 & T1 ≡[h, o] U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐+ ⦃G2, L2, U2⦄.
#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H @(fqup_ind_dx … H) -G1 -L1 -T1
-[ #G1 #L1 #T1 #H12 #U2 #HTU2 #H elim (fqu_cpx_trans_neq … H12 … HTU2 H) -T2
+[ #G1 #L1 #T1 #H12 #U2 #HTU2 #H elim (fqu_cpx_trans_ntdeq … H12 … HTU2 H) -T2
/3 width=4 by fqu_fqup, ex3_intro/
| #G #G1 #L #L1 #T #T1 #H1 #_ #IH12 #U2 #HTU2 #H elim (IH12 … HTU2 H) -T2
- #U1 #HTU1 #H #H12 elim (fqu_cpx_trans_neq … H1 … HTU1 H) -T1
+ #U1 #HTU1 #H #H12 elim (fqu_cpx_trans_ntdeq … H1 … HTU1 H) -T1
/3 width=8 by fqup_strap2, ex3_intro/
]
qed-.
-lemma fqus_cpx_trans_neq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
- ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h, o] U2 → (T2 = U2 → ⊥) →
- ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h, o] U1 & T1 = U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐* ⦃G2, L2, U2⦄.
-#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fqus_inv_gen … H12) -H12
-[ #H12 elim (fqup_cpx_trans_neq … H12 … HTU2 H) -T2
+lemma fqus_cpx_trans_ntdeq: ∀h,o,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊐* ⦃G2, L2, T2⦄ →
+ ∀U2. ⦃G2, L2⦄ ⊢ T2 ⬈[h] U2 → (T2 ≡[h, o] U2 → ⊥) →
+ ∃∃U1. ⦃G1, L1⦄ ⊢ T1 ⬈[h] U1 & T1 ≡[h, o] U1 → ⊥ & ⦃G1, L1, U1⦄ ⊐* ⦃G2, L2, U2⦄.
+#h #o #G1 #G2 #L1 #L2 #T1 #T2 #H12 #U2 #HTU2 #H elim (fqus_inv_fqup … H12) -H12
+[ #H12 elim (fqup_cpx_trans_ntdeq … H12 … HTU2 H) -T2
/3 width=4 by fqup_fqus, ex3_intro/
| * #HG #HL #HT destruct /3 width=4 by ex3_intro/
]
qed-.
-*)
\ No newline at end of file