(* *)
(**************************************************************************)
-axiom A : Type.
-axiom B : Type.
-axiom C : Type.
+include "ng_pts.ma".
-axiom f : A → B.
-axiom g : B → C.
+ninductive list (A : Type) : Type ≝
+ | nil : list A
+ | cons : A → list A → list A.
-(* nlemma xxx : ∀P:C → Prop. ∀x:A. P x. *)
+naxiom T : Type.
+naxiom S : Type.
+naxiom c : list T → list S.
-coercion f. coercion g.
+ncoercion foo : ∀_l:list T. list S ≝ c
+ on _l : list T
+ to list ?.
+
+naxiom P : list S → Prop.
+
+ndefinition t1 ≝ ∀x:list T.P x → ?. ##[ napply Prop; ##] nqed.
+
+ncoercion bar : ∀_l:list T. S → S ≝ λ_.λx.x
+ on _l : list T
+ to Π_.?.
+
+naxiom Q : (S → S) → Prop.
-axiom T : Type.
+ndefinition t2 ≝ ∀x:list T.Q x → ?. ##[ napply Prop; ##] nqed.
-axiom h : A → T. coercion h.
-
-nlemma xxx : ∀P:C → Prop. ∀x:A. P x.
\ No newline at end of file
+
+
\ No newline at end of file