| Cic.Name s -> s
;;
-let rec convert_fix_definition acc = function
- | Cic.Lambda (n,s,t) ->
- convert_fix_definition ((n,s)::acc) t
- | Cic.Fix (_, [name,rno,ty,bo]) ->
- let acc = List.map (fun (n,s) -> cn_to_s n, convert_term s) acc in
- let ty = convert_term ty in
- let bo = convert_term bo in
- Some (true,[[],name,rno,
- List.fold_right (fun (n,s) acc -> NCic.Prod(n,s,acc)) acc ty,
- List.fold_right (fun (n,s) acc -> NCic.Lambda(n,s,acc)) acc bo])
- | Cic.CoFix (_, [name,ty,bo]) ->
- let acc = List.map (fun (n,s) -> cn_to_s n, convert_term s) acc in
- let ty = convert_term ty in
- let bo = convert_term bo in
- Some (false,[[],name,0,
- List.fold_right (fun (n,s) acc -> NCic.Prod(n,s,acc)) acc ty,
- List.fold_right (fun (n,s) acc -> NCic.Lambda(n,s,acc)) acc bo])
- | _ -> None
+type ctx = Ce of NCic.hypothesis | Fix of int * int
+
+let splat mk_pi ctx t =
+ List.fold_left
+ (fun t c ->
+ match c with
+ | Ce (name, NCic.Def (bo,ty)) -> NCic.LetIn (name, ty, bo, t)
+ | Ce (name, NCic.Decl ty) when mk_pi -> NCic.Prod (name, ty, t)
+ | Ce (name, NCic.Decl ty) -> NCic.Lambda (name, ty, t)
+ | Fix _ -> t)
+ t ctx
+;;
+
+let splat_args ctx t =
+ let n_args =
+ List.length (List.filter (function Ce _ -> true | _ -> false) ctx)
+ in
+ if n_args = 0 then t
+ else
+ let rec aux = function
+ | 0 -> []
+ | n -> aux (n-1) @ [NCic.Rel n]
+ in
+ NCic.Appl (t:: aux n_args)
;;
-let convert_obj_aux = function
+let convert_term uri t =
+ let rec aux octx (ctx : ctx list) n_fix uri = function
+ | Cic.CoFix (k, fl) ->
+ let idx = ref ~-1 in
+ let bctx =
+ List.map (fun (_,_,_) ->
+ incr idx; Fix (~-1,!idx)) fl @ ctx
+ in
+ let buri =
+ UriManager.uri_of_string
+ (UriManager.string_of_uri uri^string_of_int (List.length ctx)^".con")
+ in
+ let n_fl = List.length fl in
+ let boctx,_ =
+ List.fold_left
+ (fun (types,len) (n,ty,_) ->
+ (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types,
+ len+1)) (octx,0) fl
+ in
+ let fl, fixpoints =
+ List.fold_right
+ (fun (name,ty,bo) (l,fixpoints) ->
+ let ty, fixpoints_ty = aux octx ctx n_fix uri ty in
+ let bo, fixpoints_bo = aux boctx bctx (n_fix + n_fl) buri bo in
+ (([],name,~-1,splat true ctx ty, splat false ctx bo)::l),
+ fixpoints_ty @ fixpoints_bo @ fixpoints)
+ fl ([],[])
+ in
+ let obj =
+ NUri.nuri_of_ouri uri,0,[],[],
+ NCic.Fixpoint (false, fl, (`Generated, `Definition))
+ in
+ NCic.Const (NReference.reference_of_ouri uri (NReference.CoFix (k))),
+ obj::fixpoints
+ | Cic.Fix (k, fl) ->
+ let idx = ref ~-1 in
+ let rno = ref 0 in
+ let bctx =
+ List.map (fun (_,recno,_,_) ->
+ incr idx; if !idx = k then rno := recno;Fix (recno,!idx)) fl @ ctx
+ in
+ let buri =
+ UriManager.uri_of_string
+ (UriManager.string_of_uri uri^string_of_int (List.length ctx)^".con")
+ in
+ let n_fl = List.length fl in
+ let boctx,_ =
+ List.fold_left
+ (fun (types,len) (n,_,ty,_) ->
+ (Some (Cic.Name n,(Cic.Decl (CicSubstitution.lift len ty)))::types,
+ len+1)) (octx,0) fl
+ in
+ let fl, fixpoints =
+ List.fold_right
+ (fun (name,rno,ty,bo) (l,fixpoints) ->
+ let ty, fixpoints_ty = aux octx ctx n_fix uri ty in
+ let bo, fixpoints_bo = aux boctx bctx (n_fix + n_fl) buri bo in
+ (([],name,rno,splat true ctx ty, splat false ctx bo)::l),
+ fixpoints_ty @ fixpoints_bo @ fixpoints)
+ fl ([],[])
+ in
+ let obj =
+ NUri.nuri_of_ouri uri,0,[],[],
+ NCic.Fixpoint (true, fl, (`Generated, `Definition))
+ in
+ NCic.Const (NReference.reference_of_ouri uri (NReference.Fix (k,!rno))),
+ obj::fixpoints
+ | Cic.Rel n ->
+ (match List.nth ctx n with
+ | Ce _ -> NCic.Rel (n-n_fix), []
+ | Fix (recno, fixno) ->
+ splat_args ctx
+ (NCic.Const
+ (NReference.reference_of_ouri uri (NReference.Fix (fixno,recno)))),
+ [])
+ | Cic.Lambda (name, (s as old_s), t) ->
+ let s, fixpoints_s = aux octx ctx n_fix uri s in
+ let ctx = Ce (cn_to_s name, NCic.Decl s) :: ctx in
+ let octx = Some (name, Cic.Decl old_s) :: octx in
+ let t, fixpoints_t = aux octx ctx n_fix uri t in
+ NCic.Lambda (cn_to_s name, s, t), fixpoints_s @ fixpoints_t
+ | Cic.Prod (name, (s as old_s), t) ->
+ let s, fixpoints_s = aux octx ctx n_fix uri s in
+ let ctx = Ce (cn_to_s name, NCic.Decl s) :: ctx in
+ let octx = Some (name, Cic.Decl old_s) :: octx in
+ let t, fixpoints_t = aux octx ctx n_fix uri t in
+ NCic.Prod (cn_to_s name, s, t), fixpoints_s @ fixpoints_t
+ | Cic.LetIn (name, (s as old_s), t) ->
+ let s, fixpoints_s = aux octx ctx n_fix uri s in
+ let old_ty,_ =
+ CicTypeChecker.type_of_aux' [] octx old_s CicUniv.oblivion_ugraph
+ in
+ let ty, fixpoints_ty = aux octx ctx n_fix uri old_ty in
+ let ctx = Ce (cn_to_s name, NCic.Def (s, ty)) :: ctx in
+ let octx = Some (name, Cic.Def (old_s, Some old_ty)) :: octx in
+ let t, fixpoints_t = aux octx ctx n_fix uri t in
+ NCic.LetIn (cn_to_s name, ty, s, t),
+ fixpoints_s @ fixpoints_t @ fixpoints_ty
+ | Cic.Cast (t,ty) ->
+ let t, fixpoints_t = aux octx ctx n_fix uri t in
+ let ty, fixpoints_ty = aux octx ctx n_fix uri ty in
+ NCic.LetIn ("cast", ty, t, NCic.Rel 1), fixpoints_t @ fixpoints_ty
+ | Cic.Sort Cic.Prop -> NCic.Sort NCic.Prop,[]
+ | Cic.Sort Cic.Set -> NCic.Sort NCic.Set,[]
+ | Cic.Sort Cic.CProp -> NCic.Sort NCic.CProp,[]
+ | Cic.Sort (Cic.Type _) -> NCic.Sort (NCic.Type 0),[]
+ (* calculate depth in the univ_graph*)
+ | Cic.Appl l ->
+ let l, fixpoints =
+ List.fold_right
+ (fun t (l,acc) ->
+ let t, fixpoints = aux octx ctx n_fix uri t in
+ (t::l,fixpoints@acc))
+ l ([],[])
+ in
+ NCic.Appl l, fixpoints
+ | Cic.Const (curi, _) ->
+ NCic.Const (NReference.reference_of_ouri curi NReference.Def),[]
+ | Cic.MutInd (curi, tyno, _) ->
+ NCic.Const (NReference.reference_of_ouri curi (NReference.Ind tyno)),[]
+ | Cic.MutConstruct (curi, tyno, consno, _) ->
+ NCic.Const (NReference.reference_of_ouri curi
+ (NReference.Con (tyno,consno))),[]
+ | Cic.MutCase (curi, tyno, oty, t, branches) ->
+ let r = NReference.reference_of_ouri curi (NReference.Ind tyno) in
+ let oty, fixpoints_oty = aux octx ctx n_fix uri oty in
+ let t, fixpoints_t = aux octx ctx n_fix uri t in
+ let branches, fixpoints =
+ List.fold_right
+ (fun t (l,acc) ->
+ let t, fixpoints = aux octx ctx n_fix uri t in
+ (t::l,fixpoints@acc))
+ branches ([],[])
+ in
+ NCic.Match (r,oty,t,branches), fixpoints_oty @ fixpoints_t @ fixpoints
+ | Cic.Implicit _ | Cic.Meta _ | Cic.Var _ -> assert false
+ in
+ aux [] [] 0 uri t
+;;
+
+let convert_obj_aux uri = function
| Cic.Constant (name, None, ty, _, _) ->
- NCic.Constant ([], name, None, convert_term ty,
- (`Provided,`Theorem,`Regular))
+ let nty, fixpoints = convert_term uri ty in
+ assert(fixpoints = []);
+ NCic.Constant ([], name, None, nty, (`Provided,`Theorem,`Regular)),
+ fixpoints
| Cic.Constant (name, Some bo, ty, _, _) ->
- (match convert_fix_definition [] bo with
- | None ->
- NCic.Constant ([], name, Some (convert_term bo), convert_term ty,
- (`Provided,`Theorem,`Regular))
- | Some (recursive, ifl) ->
- NCic.Fixpoint (recursive, ifl, (`Provided, `Definition)))
- | Cic.InductiveDefinition (itl,_,leftno,_) ->
+ let nbo, fixpoints_bo = convert_term uri bo in
+ let nty, fixpoints_ty = convert_term uri ty in
+ assert(fixpoints_ty = []);
+ NCic.Constant ([], name, Some nbo, nty, (`Provided,`Theorem,`Regular)),
+ fixpoints_bo @ fixpoints_ty
+ | Cic.InductiveDefinition (_,_,_,_) -> assert false (*
let ind = let _,x,_,_ = List.hd itl in x in
let itl =
List.map
List.map (fun name, ty -> [], name, convert_term ty) cl)
itl
in
- NCic.Inductive (ind, leftno, itl, (`Provided, `Regular))
+ NCic.Inductive (ind, leftno, itl, (`Provided, `Regular)) *)
| Cic.Variable _
| Cic.CurrentProof _ -> assert false
;;
-let convert_obj uri obj = NUri.nuri_of_ouri uri,0, [], [], convert_obj_aux obj;;
+let convert_obj uri obj =
+ let o, fixpoints = convert_obj_aux uri obj in
+ let obj = NUri.nuri_of_ouri uri,0, [], [], o in
+ obj, fixpoints
+;;