--- /dev/null
+(**************************************************************************)
+(* ___ *)
+(* ||M|| *)
+(* ||A|| A project by Andrea Asperti *)
+(* ||T|| *)
+(* ||I|| Developers: *)
+(* ||T|| The HELM team. *)
+(* ||A|| http://helm.cs.unibo.it *)
+(* \ / *)
+(* \ / This file is distributed under the terms of the *)
+(* v GNU General Public License Version 2 *)
+(* *)
+(**************************************************************************)
+
+set "baseuri" "cic:/matita/sigma_algebra/".
+
+include "topology.ma".
+
+record is_sigma_algebra (X:Type) (A: set X) (M: set (set X)) : Prop ≝
+ { siga_subset: ∀B.B ∈ M → B ⊆ A;
+ siga_full: A ∈ M;
+ siga_compl: ∀B.B ∈ M → B \sup c ∈ M;
+ siga_enumerable_union:
+ ∀B:seq (set X).(∀i.(B \sub i) ∈ M) → (∪ \sub i B \sub i) ∈ M
+ }.
+
+record sigma_algebra : Type ≝
+ { siga_carrier:> Type;
+ siga_domain:> set siga_carrier;
+ M: set (set siga_carrier);
+ siga_is_sigma_algebra:> is_sigma_algebra ? siga_domain M
+ }.
+
+(*definition is_measurable_map ≝
+ λX:sigma_algebra.λY:topological_space.λf:X → Y.
+ ∀V. V ∈ O Y → f \sup -1 V ∈ M X.*)
+definition is_measurable_map ≝
+ λX:sigma_algebra.λY:topological_space.λf:X → Y.
+ ∀V. V ∈ O Y → inverse_image ? ? f V ∈ M X.
+
record topological_space : Type ≝
{ top_carrier:> Type;
top_domain:> set top_carrier;
- top_O: set (set top_carrier);
- top_is_topological_space:> is_topology ? top_domain top_O
+ O: set (set top_carrier);
+ top_is_topological_space:> is_topology ? top_domain O
}.
(*definition is_continuous_map ≝
λX,Y: topological_space.λf: X → Y.
- ∀V. V ∈ top_O Y → (f \sup -1) V ∈ top_O X.*)
+ ∀V. V ∈ O Y → (f \sup -1) V ∈ O X.*)
definition is_continuous_map ≝
λX,Y: topological_space.λf: X → Y.
- ∀V. V ∈ top_O Y → inverse_image ? ? f V ∈ top_O X.
+ ∀V. V ∈ O Y → inverse_image ? ? f V ∈ O X.
record continuous_map (X,Y: topological_space) : Type ≝
{ cm_f:> X → Y;